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FOREWORD

This Final Technical Report describes the results
obtained by SIGNATRON, Inc., of Lexington, MA on Air
Force Contract F30602-82-C-0163 for Rome Air Develop-
ment Center.

The objective of the study effort was ﬁo contri-
bute to the technology required to characterize equip-
ment EMC performance in forms which are relatable to
c3: system lével EMC analysis and design problems.
The specific objective of this effort was to establish
and develop criteria for the port specification of
equipment level EMC performance in terms of nonlinear

Volterra transfer functions with particular emphasis
on the rusty bolt problem.

Dr. Leonard Ehrman was the Project Manager. Mr.
Laurens D. Tromp was the Principal Analyst and Dr.
Michael Rudko consulted to the project. In addition
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EXECUTIVE SUMMARY

Air Force C3I systems may have to operate in an electro-
magnetically hostile environment. Collocated transmitters and
receivers, on electronically dense platforms, are susceptible to
performance degradation through nonlinear effects. The non-
linearities can occur in transmitters, receivers, or in the
coupling paths ("rusty bolt" effect) between transmitters and
receivers. Together the nonlinearities generate a spectrum of
unwanted interference signals which degrade the desired signal
spectral fidelity and EMC performance. The objective of this
effort was to establish and develop criteria for the port
specification of equipment level EMC performance in terms of
nonlinear Volterra transfer functions with particular emphasis on
the rusty bolt problem. The study concentrated on the identifi-
cation (estimation) of nonlinear transfer functions (NLTF) and
their use in predicting the EMC specification parameters such as
gain compression and desensitization, harmonic distortion, cross
modulation and intermodulation. It is assumed that the nonlinear
systems of interest can be modeled as lumped parameter circuits
with zero-memory nonlinearities between the circuit nodes. In
this case the NLTF poles are determined by the poles" of the
linear part of the circuit. Two different cases are considered.
In the first case, the linear transfer function (LTF) output can
be measured and identified from a transient response. The poles
of the LTF then specify the poles of the NLTFs. 1In the second
case, the received signal contains a strong direct path component
which is independent of the nonlinear system which is to be
identified. This situation arises in the identification of the
"rusty bolt" (a Metal-Insulator-Metal junction). Because of the
strong direct component, the "rusty bolt" linear response cannot
be measured directly. Under this condition, it is necessary to

-iv-




estimate the poles of the LTF and NLTF's from sinusoidal steady
state third order nonlinear response measurements.

The results of the study indicate the following:

1, Mean squared error between measured output and the
output of the identified system is a more reliable
predictor of the errors in the NLTF specification
parameters than errors in pole locations.,

Global mean squared error cannot be used to predict
the error in the specification parameters in all
cases, specially when the number of poles is mis-
identified. Instead, an error criterion which is
segmented in frequency should be used.

el S

o

For the rusty bolt lumped parameter circuit and an MIM

<o .

i-v characteristic up to fifth order, the EMC specifi-
cation parameters up to fifth order can be predicted
with good quality provided that the number of poles
are identified correctly and that the errors in the
estimates of the linear transfer function poles and
the antenna impedance are reasonable (say less than 30
percent).

The study has also produced the following list of recom-
mendations for further research:

1. Design and implement algorithms for the two sinusoidal
steady state poles and zeros identification techniques
developed under this present contract and evaluate

their performance in noise. The first technique uses
magnitude measurements while the second technigque uses
phase measurements of a third order response to
identify the poles and zeros.
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2. Measure a MIM junction on a laboratory bench.

3. Identify and measure the nonlinear performance of the
same MIM junction in an anechoic chamber. Predict the
system nonlinear performance based on a lumped para-

" meter circuit model and refine the model if necessary.

| g s W pC

4. Upon successful identification of the rusty bolt and
adequate prediction of the nonlinear system perfor-

3 mance in step 3, perform identification on board an _
3 aircraft. A word of caution is in order. It should
: be noted that even if the results of step 3 indicate
‘ that a lumped parameter is adequate to represent a ‘
, rusty bolt in anechoic chambers, the success of the
A
3 experiment on board an aircraft is not guaranteed.
:j The reason is that the aircraft rusty bolt will
"] probably be of a distributed nature and the char- -
. acteristics may be time varying. This would require ﬁ
Y
4 the development of a distributed parameter (transmis- A
:, sion line) and possibly time varying rusty bolt non- 9
A linear model. Nevertheless, usefull information can -
be obtained by performing the experiment. -
:
( g
; ¥
5
:
. a
\" _
4, [
b
I.l .”.
ol
-vi- oy
‘\.
=

4:»:; s

T e R A R T T T e RN o S S T R T o 6 |
R N AR IRRRRRRMI i
3T 33 R L AN ARAS WY LGN AN AR L P



‘‘‘‘

A

SECTION

3
3.1.1.
3.1.1.3

3.1.
3.1.2.2

3.
3.

4.1 "RUSTY BOLT"

4.
4.
4.
4.

4 i“ﬁ‘\- 37 A% 8°
‘1 .‘.'P‘.* ‘SF."

TABLE OF CONTENTS

1 INTRODUCTION....'................I.............‘.‘....
2 THE IDENTIFICATION PROBLEM...ccccesscsvevccccccnccccce

1 INTRODUCTION.........................l...........
2 IDENTIFICATION TECHNIQUE SURVEY AND REVIEW.......
3 PROBE WAVBFORM INVESTIGATION.................Q...
2.4 IDENTIFICATION ERROR ANALYSIS.:cccccosccscccccccce

3 NLTF SPECIFICATION PARAMETER INVESTIGATION:ccocccscccs

3.1 RELATIONSHIP OF SPECIFICATION PARAMETERS TO
NLTF AND LTF...........'..........l..............

3.1.1 Nonlinear Systems Without MemOry....ccesee

.1.1.1 Gain Compression and
msensitization.................0..

2 Crossmodulation..cceeseccsccsccsccce

Intemodulation....................

3.1.2 Nonlinear Systems with MemOry..c.ccecocccese

2.1 Two~-Tone Input Example...c.scccceces
Specification Parameters..cccccecee

Gain Compression/Expansion..
Intermodulation, Harmonic
Distortion and
Desensitization.cceeeccccese

3.2 SENSITIVITY ANALYSIS..............'.‘.............

'3.2.1 Two POle Example......'.0....0.'...00.....
3.2.2 Three Pole Example..ccccccccccsccsscsscsecs

4 TﬂE .RUSTY BOLT. PROBLEM.O...'........................
MODELING......‘.....................

1.1 Volterra Transfer Functions of the

Rusty Bolt.................0..............
1.2 Linear Response and Transfer Functions....
1.3 Higher Order Output Voltage to Input

Current Transfer FunctionS..c.cececesccces
1.4 Output Voltage to Input Voltage

Transfer FunctionS..ccceceeccccoccscssscss

PAGE

1-1
2-1
2-1
2-4

2-12
2-13

3-1
3-2
3-3
3-4
3-5
3-6

3-10
3-15

3-15

3-17
3-17

3-18
3-27




TABLE OF CONTENTS (Continued)

SECTION

4.2 POWER CONSTRAINT ON THE "RUSTY BOLT" LINEAR
RESPONSB MEASUREMENT..0..........................

4.2.1 "Rusty Bolt" Linear Response Measurement..
4.2.2 Received Power LevelS...ccstecesesccccccse

RUSTY BOLT NLTF IDENTIFICATION.:ceccscscsccccoccoscsocs
5.1 RUSTY BOLT IDENTIFICATION TECHNIQUES.:..ecescecsces

5.1.1 Transient Probe Waveform Analysis for
the Rusty Bolt.......0.0.......l...l...‘..
5.1.2 Sinusoidal Steady State Analysis for the
Rusty Bolt.l.....l........O......l..l.....

5.1.2.1 Third-Order Transfer Function
Identification Using Sinusoidal
Steady-State MeasurementS.....cccoe

5.1.2.2 Sinusoidal Steady State Identifi-
cation Including the Effects of
the Fifth Order NLTF..ccccecoecccocs

5.1.2.2.1 Two-Tone Input Example......

5.1.2.3 Sinusoidal Steady State Poles and
Zero Identification Using Phase
Infomation..‘.....l...........'...

5.1.2.4 1Identification of Rusy Bolt NLTF
Specification Parameters
Constants.........l...........O....

Y
e
Yy

o

5.1.2.4.1 Nonlinear Response
Heasutement.................

5.1.2.4.2 Determination of Gain
Constants from Harmonic
Heasurements.‘......0.......

£
gt Sk "t AP

5.2 SPECIFICATION PARAMETERS INVESTIGATION FOR THE
RUSTY BOLT.........O..........‘....D.............

AL AR

5.2.1 1Intermodulation and Harmonic Distortion
Prediction Assuming a Third Order i-v
CharacteristiCO........l‘...‘.......l...‘.

5.2.1.1 Caution in Using Severely Mis-
identified Poles to Estimate
Constants to Predict Nonlinear
Perfomance..l.O..l..........O....l

-viii-

LS LY 1. . y it i‘;':ﬂ.\;ﬁ r«t.:‘*tur'.v u‘
; ‘. ii"ﬁ‘ ‘:"‘ % '“—, LI v, ;0. ‘7 ““'“" i\i‘(.l

. m‘ l‘*g»&



SECTION
5.2.2
5.3 CONCL

TABLE OF CONTENTS (Concluded)

PAGE

Intermodulation and Harmonic Distortion
Prediction Assuming a Fifth Order i-v
MIM Characteristic................o....... 5-33

5.2.2.1 Determination of Combined Constant
Associated with ks................. 5=37

USION....'............‘.‘..................'. 5-41

6 MEASUREMENT AND INSTRUMENTATION CRITERIA..ccccscessess 6=1

6.1 TEST

6.1.1
6.1.2

PROCEDURES AND REQUIREMENTS.cccc0c000000000ee 6-2

Intermodulation and Harmonic Measurement.. 6-
Rusty Bolt Experimental Criteria and
Methodology.........0...........0.0..000.. 6-

6.1.2.1 Probe Waveform and NLTF Specifi-

cation Heasutement....o.oo......... 6-6
6.1.2.2 System Dynamic Range and Trans-

mitted POWEY.eseeceosscscesssessncsne 6-6
6.1.2.3 Rusty Bolt Identification and

Hodel validationooooo-oooooo.ooo-oo 6‘6

7 CONCLUSIONS AND RECOHHENDATIONS....................... 7-1

APPENDIX A

APPENDIX B

APPENDIX C

LINEAR IDENTIFICATION TECHNIQUES, AND A
DFT-BASED 'RUSTY-BOLT' TESTING TECHNIQUE

THE ELECTRIC TUNNELING EFFECT AND PROPERTIES
OF A METAL-INSULATOR-METAL (MIM) JUNCTION

VOLTERRA TRANSFER FUNCTIONS FOR A “RUSTY BOLT"
EQUIVALENT CIRCUIT

=fix-

T AT R W I YN AN R A PN

PO AU ,4%_!.-% b g AT »

R Vo, i Yo

S N T e e e e
- A LS




N R SRS AU SR SR SRR AT A TS PN [P FAN

LIST OF FIGURES

_,,<., v
ey S 8 b

FIGURE

3-1 Relationship Between NMSE and SENR.ccescoscsccsaces
3-2 True and Predicted Third Order Harmonic.
Predicted based on a single identified pole at

\..
-

K““ A

-~
.

?l
A A

s=- .25......I.......‘...............I......‘....

True and Predicted Third Order Intermodulation
Predicted based on a single non-optimized

- L e
T

identified pOle at S = - .25..'.......QQ.Q.QQ....IQ
True and Predicted Third Order Harmonic.

Predicted based on using optimized identified
poles..O......l....'l........I!'.....‘........'.l..
True and Predicted Third Order Intermodulation.
Predicted based on optimized identified pole.......
Frequency Responses of the True and Identified
Systems for Three Pole Example@.ccccescssscscscscccne
True and Predicted Third Harmonic. Predicted
based on two identified poles at

sl= ‘1 and Sz= —lo © 60000008000 OPCOIIBIIOSIOEOIOEOEOIEOEPBSOORTOTDS

True and Predicted Third Order Intermodulation.
Predicted based on two identified poles at

sl-. -1 and 52= -10 ® 0 0 8 00 0 00 5.0 000600000 0000008000000

-
|
[

Back-to-Back Diode Pair with an Antenna Sys!'em

which Represent a Symmetrical Nonlinearity.ccseceeee
Simplified Circuit Model for the MIM Junction......
Norton Equivalent Circuit for the MIM Junction.....
Circuit used in Determining the Linear Voltage

V (t)...'Q.....l‘.00....l..........Q...O...........
Example of "Rusty Bolt" Linear System Response

Measurementl..Ql..C.‘..0.......O....0....0......‘..
Sidelobe to Sidelobe "Rusty Bolt"™ CouplinQessescecss
Mainbeam to Mainbeam "Rusty Bolt” Coupling.cecesces

I | |
~ w [ VN V)

|
w N =

Fifth Order System Model...cscscevscecccosocscnsscocs
Third Order Intermodulation Magnitude as a
Function Of fz.....O......l.'....................0.
Intermodulation Magnitude at Frequency 2f,-f,,

[V %, Ly [ P -
1
EE L

wn
1
T

R

oY
*Wﬁéﬁ

oA

(Y3—)’20 dB.C...O............0...............'....
5

e

Bl

Intermodulation Magnitude at Fregency 2£,-£5,

('FE') e 1« | -

- -

V '.l‘ t\ !‘5

N
‘t“uﬁu x“'

6”“!"“':‘\. X

(]
AOLN Pgi AN




s ®

o4
ﬁ

21'

R34S

ST LIST OF FIGURES (Concluded)

..";:;7:

i" FIGURE PAGE
X0

i{» 5-5 True and Estimated Third Order Harmonic using

bRy Volterra Voltage to Voltage Transfer Function,

o Estimate Based on Two POleS... cccsccccccccsccscnce 5-28
}b@ 5-6 True and Estimated Third Order Barmonic using

ol Volterra Voltage to Voltage Transfer Punction,

N Estimate Based on TWO POleS...cisecsevscsscescscoss 5-29
A 5-7 True and Estimated Third Order Harmonic using

i Volterra Voltage to Voltage Transfer Function,

. Estimate Based on a Single POl@ccscocccocscccsoossee 5-31
e 5-8 True and Estimated Third Order Intermodulation

R using Volterra Voltage to Voltage, Estimate

& ‘ Based on a Single POl@cccecccccocsccssssosccncocssse 532
iads 5-9 True and Estimated Fifth Order Harmonic using

A Volterra Voltage to Voltage Transfer Functions..... 5-38
;;- 6-1 Harmonic Generation Measurement...cscceccceesccccecees 6-4
5‘3 6-2 Intermodulation Generation Measurement....ccccceeee 6-4
b

(X% "

I

N T\
A
» o

-xi-




LIST OF TABLES

PAGE

First and Second Order Nonlinear ResponseS......... 3-12
Third Order Nonlinear ReSpONSeS.....ccvesssccncsces 3=-13
Optimized Identification of thc System

9
Hl(s) = (s+1)(s+10) 9000000000000 0000000000000BOOETS 3-19

Non-Optimized Identification of the System

9
Hl(s) = s+ s+ ..'............................ 3-20

Estimated Constants as a Function of Fundamental
Measurement FreQuUeNnCY.ccceececcccscccssscscsssssnces 5=34
Comparison of Estimated Constants using a Highly
Il11-Conditioned System of Equations and Harmonic
Measurements with the Assumption Kg=0eeeeoeonsesses 5-39

o e nd
i

o A

ol
A

Pk 5

o Y

A
oAy vl

9 Yy N
R %Y WIVEN) o AS AP RG 30 - 2 f‘ ARG 'a‘:‘~‘.‘l".'~“¢\¢‘;' .
» 5} h&f"ﬂ;‘ﬁ, j"?\:Sf::g ‘;: k;:ﬁi‘ L5 ' \:::‘:' aiﬂ.ﬁkﬁ;f RN

v '*.\.j WO ] i ‘.,‘ v SN

] ) . )
Geaht M sl UG WRR IR A

(Y



SECTION 1
INTRODUCTION

Air Force 31 systems may have to operate in an electro-
magnetically hostile environment. Collocated transmitters and
receivers, on electromagnetically dense platforms, are suscept-
ible to performance degradation through nonlinear effects. The
objective of this program was to specify eguipment level EMC per-
formance in terms of nonlinear transfer functions (NLTFs) and to
evaluate the quality of the specification parameters. The NLTFs
are defined by Volterra theory. The specification parameters,
such as harmonic distortion, intermodulation and crossmodulation
can be specified by the NLTFs.

The approach taken in this program is to identify the
NLTPs, use the NLTFs to predict the specification parameters and
analyze the resulting errors in the EMC performance criteria. It
is assumed that the nonlinear systems of interest can be modeled
as lumped parameter circuits with zero-memory nonlinearities be-
tween the circuit nodes. In this case the NLTF function poles
are determined by the poles of the linear part of the circuit.

Two different situations are treated in this report. In
the first, the linear transfer function output can be measured.
That is, the measured signal is the output of ithe nonlinear
system excited by a known input plus noise. In this case, a
linear system identification technique, such as the pencil-of-
functions method {Jain (1980)], can be used to identify the poles
of the linear system based on the transient response. These
poles then specify the poles of the NLTFs,

In the second, the received signal is composed of the non-
linear system output, additive noise and a strong direct path
component which is independent of the system. This case arises
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in the identification of a "rusty bolt" (a Metal-Insulator-Metal
or Metal-Oxide-Metal) function. Because of the relative strength
of the direct path transmission between the input and the output,
the linear system response cannot be measured. It is then neces-
sary to estimate the poles of the linear and nonlinear transfer
functions based on the sinusoidal steady state measurements of
the third-order transfer functions.

The report is organized as follows. First, the general
case where the linear system output can be measured is considered
in Sections 2 and 3.

In Section 2, the problem of lumped parameter nonlinear
system 1dent1f1cat10n is defined. The Volterra series represen-
tation of such systems is given and the fact that the linear
system transfer function poles determine the nonlinear transfer
function poles is presented. The NLTF identification problem
then reduces to the identification of the 1linear transfer
function poles and of the residues of the NLTFs. A survey of
linear system identification technigues based on the analysis of
the transient response is presented. Criteria to be used in
specifying the probe waveform and typical probe waveforms are
described. The identification of the 1linear system poles
requires two steps. The characteristic polynomial of the system
function must be estimated and then be factored in order to
determine the poules, The errors that can be made include the
misidentification of the number of poles or, equivalently, of the
degree of the characteristic polyromial, errors in the coeffi-
cients of the characteristic polynomial and errors resulting from
the factoring operation. It is shown that relatively large
errors in pole locations may result even if the number of poles
is determined correctly and the errors in the coefficients are
small.
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In Section 3, the EMC specification parameters are first
related to the NLTFs of the system. The specification parameters
of interest include gain compression and desensitization, cross
modulation, intermodulation and harmonic distortion. A sensi-
tivity analysis of the effects of linear system function errors
on the NLTFs and the specification parameters is performed,

Based on several examples, it is concluded that mean
squared error between the measured output and the output of the
identified system is a more reliable predictor of the errors in
the NLTF specification parameters than are errors in pole loca-
tions., It is, however, found that the global mean squared error
between the outputs cannot be used to predict the error in the
specification parameters in all cases, especially when the number
of poles is misidentified. 1Instead an error criterion which is
segmented in frequency should be used.

Sections 4, 5 and 6 deal with the second type of NLTF iden-
tification where the linear system function cannot be directly
identified. Air Force €31 platforms, such as the E-3A (AWACS)
and E-4B, contain a large number of colocated transmitters and
receivers. There is a recognized interference problem in these
dense electronic platforms due to harmonic and intermodulation
interference caused by the nonlinearity of metal-insulator-metal
(MIM) or metal-oxide-meal (MOM) functions in the structure.
These functions are colloquially referred to as “rusty bolts".
The nonlinear characteristics cause harmonic, cross modulation
and intermodulation products which couple to a re-radiating
structure. The nonlinear products which fall into the passband
of nearby receivers degrade system performance.

In Section 4, a lumped parameter circuit model of the
"rusty bolt" and the nonlinear transfer functions that are to be
used in the analysis are derived. It is shown that, in this case
also, the NLTFs depend only on a linear transfer function and on
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;' the coefficients of the nonlinear current-voltage MIM character~

' istic. It is demonstrated, however, that in a typical measure-

b1y ment situation on board an aircraft, the power level of the out-

; % put of the “"rusty bolt" linear transfer function can be expected
& to be some 40 dB below that of the free space direct path signal
' between the transmitting and receiving antennas. Identification

o

X of the rusty bolt linear system poles based on such a relatively
a3 weak rusty bolt output signal would not be feasible in practice.
§ Therefore, the rusty bolt can only be identified from direct
measurements of the nonlinear response.

5;& Section 5 addresses the problem of rusty bolt NLTF identi-
*2; fication. Rusty bolt identification based on transient and
&5; steady state nonlinear response measurements is first considered. ‘
?{; It is concluded that identification based on the sinusoidal
gﬂ? steady state response is better suited for the rusty bolt problem
§§; because of the difficulty of separating the nonlinear transient
&3 response from the linear transient response or the direct path

, component. Sinusoidal steady state probing allows the separation
éﬁ‘ of the different order responses and can be used to measure the
g\l frequency response of the third order nonlinear transfer

4 function. Based on the rusty bolt circuit model and on the third
Bf order NLTF frequency response, the poles of the linear transfer
ﬁb function can be identified. The remaining unknowns, the rusty
2&, bolt NLTF specification parameter constants, can then be deter-
&;' mined from harmonic measurements.
:;i Once the identification is completed the nonlinear specifi- |
o cation parameters of the rusty bolt such as intermodulation and

-bz harmonic distortion can be predicted. Section 5.2 examines the
yff errors that can be encountered in the identified parameters and .
;7~ in the predicted EMC specification parameters.

The measurement and instrumentation criteria to be used in
the sinusoidal steady state identification of the rusty bolt are
presented in Section 6. s
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Finally the conclusions which can be drawn from this study

and recommendations for future work are described in Section 7.




SECTION 2
THE IDENTIFICATION PROBLEM

2.1 INTRODUCTION

A nonlinear system which exhibits no jumps or hysteresis
can be represented by a Volterra series. The system's output
y(t) due to an excitation x(t) is given by

ylt) = } 7 eee | hn(ul,'°°,u ) n x( t-u, )du

n=] - -0 i=1
(2.1)
= Z ¥y, (t)
n=1

where y,(t) is the nth-order system output. The system is then
characterized, i.e., its input-output relation is completely
specified, when the nth-order impulse responses hn(ul.....un).
n=1,2,... are identified.

If the system's nonlinearity is mild, the output is given
by the first few, normally the first three, terms of the series:

y(t) = Z yo(t) . (2.2)

In order to characterize an nth order system, it is necessary to
determine hp(uy,...,u,y), n=1,2,... or, equivalently, the higher-
order transfer functions which are the n-dimensional Laplace
transforms of hp(uj,...,uy); for the mild case, n=3, and:
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H,(s) = Ll[hl(u5]
Hz(sl,sz) = Lz[hz(ul,uz)]

H3(Sl 152153) = L3[ h3(ullu2lu3)]

where L, denotes the n-dimensional Laplace transformation.

This problem is, in general, extremely complex since it
involves the determination of multidimensional functions. It has
however been shown that, in the case where the nonlinear system
is a 1lumped parameter circuit with zero-memory nonlinearities
between circuit nodes, the equivalent higher order transfer func-
tion poles can be obtained from the poles of the linear transfer
function [Graham and Ehrman (1973); Ewen (1975]). More precisely,

let the transfer function of the linear part of the system be
given by

where, ~=Qj,~Q2reeer=Qyéi ~P1+~P2ressr=PN? R3sRsec./Ry, are,
respectively, the zeros, poles and residues of the transfer func-
tion and it has been assumed for notational simplicity that the
poles are distinct. Then, the 2nd and 3rd-order transfer func-
tions are given, respectively, by ([Ewen, (1975)]
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2
H,(s,,8,) = } A
2\71'72 klsl K -=1 klk2 [sl+sz+ak1+ak2](32+ak2)[sl+ak2)

Cc
L N k1k2k3

) )
- a1 (B,¥8,+s.+(a +a  +a  ])
2 1l k3 1 1 72 73 kl kz k3

1
H,(S1+54¢8 =
3(syrsyes3) = 3 kzsl X

(2.5)

1 1
[(sl+ak3)(sl+s3+(ak2+ak3)] + (sz+ak37(sl+sz+(akz+ak3I)

+ 1 + 1
(sy%ay Jisy¥sptlay tay J) 7 Usgray Jisytegtia +ayl)

1

1
+
' (sp*ay Jlsa¥sytlay *ay J) = (sg+ay Jis +sy+lay +a J) ]

where, the quantities J,L,N, akl, akz are uniguely determined by
the poles of the linear transfer function H;(s). The complete
identification of the nonlinear transfer functions of the system
requires, therefore, the identification of the linear transfer
function and the determination of the constants Aklkz and ck1k2k3
for the permissible values of k;, ky, and kj.

The poles of the linear transfer function thus play a
crucial role in the identification of the linear and nonlinear
parts of the system. They not only specify the denominator of
Hi(s), but also linear combinations of these poles determine the
poles of H,(s;,s8;) and H3(sy,8;,83).
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In this section we will present a survey and review of
linear system identification techniques, discuss the factors to
be used to specify the probe waveforms and analyze the effect of
errors in pole locations on the quality of the linear system
frequency response identification. Since the identification of
the nonlinear transfer functions is also based on the identified
linear system poles, the general conclusions will also apply to
the accuracy of nonlinear identification. This problem is
discussed more fully in Section 3 where NLTF specification
parameters such as harmonic distortion and intermodulation are
related to the linear and nonlinear transfer functions and the
identification errors of these

effects on parameters are

analyzed,

2,2 IDENTIFICATION TECHNIQUE SURVEY AND REVIEW

An important class of identification techniques for lumped
parameter, linear, time invariant, systems is based on the esti-
mation of the characteristic polynomial of the system function.
The characteristic polynomial is then factored to obtain the
poles. Methods based on this procedure will be presented in this
section. Two other techniques which may be used, the equation

error and quasi-linearization methods, are presented in
Note that these methods are based on
A method

which uses steady state measurements is described in Section 5.

Appendix A by V.K. Jain.
the analysis of the transient response of the system,

These transient analysis methods are related to the Prony
method [Prony (1895)] of modeling data by a linear combination of
exponentials. The relationship between Prony's method and
spectral estimation 1is described by Kay and Marple [1981].
Applications of Prony's method and various implementations and
refinements of the technique are presented by Bucker (1977),
Chuang and Moffatt (1976), Jackson and Soong (1978), Jackson et
al (1978), McDonough (1963), Mittra and Pearson (1978), Prado and
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Moroney (1978) and Sgahubert (1979), Note that, as described
below, the pencil of functions method [Jain, 1974, Jain, 1980]

may be viewed as a variation and an improvement of Prony's
technique.

The system to be identified is excited by a known probe
waveform x(t) and the output y(t) is measured. Since the identi-
fication is performed by computer analysis, sampled versions of
the system input and output are used. The sampled measured
output y(n) contains noise and can therefore be expressed as

y{n) = ;(n) + e(n) (2.6)

where y(n) is the model output of the system to be identified and
e(n) is the additive noise component. The system function of the
model is given in the z-domain by

¥(z) _ P(z) _ P(z)
X(z) 0O(2) p
I (z = zi)

1

(2.7)

i

where X(z) and }(z) are, respectively, the z-transform of the
sequence of input samples x(n) and of ;(n). The natural log of
Z)s eeey 2zp divided by the sampling time interval are the
poles. In the discussion that follows we will, for convenience,
refer to the z;'s as the poles., Suppose that the input is such
that X(z) is a rational function of z:

X(z) = R(2) - R(2z)

S(z) 5%q (2.8)
i=p+1
2-5
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where Zp41r cecr Zpyq are the poles of the input X(z). It
follows from (2.7) and (2.8) that

P(z) R(z) - P(z) R(z)
p+q v(z)

T (z - z;)
i=1

§(z) =

(2.9)

where y(z) is the characteristic polynomial of Y(z), and is equal
to

p*q
¥(z) = Q(z) s(z) = 1 (z - z )
i=1
p+q i
= ] a zP*271 ag =1 . (2.10)
i=0 %

Note that the system model's poles zj, ..., zp and the input
poles Zn4lr seer Zpyq are the roots of the characteristic poly-
nomial of Y(z). That is,

w(zi) =0,1i=1, 2, ..., p*q . (2.11)

It is therefore desired to estimate the characteristic polynomial
¥(2z) or, equivalently, the coefficients of the characteristic
polynomial aj, «... ap+q based on the measurements y(n), n = 0,
1, ..., N-1, The system poles can then be obtained by factoring
v(z).
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The coefficients of the characteristic polynomial are v
n chosen as those which minimize the mean square difference E 4q
’ between the model output y(n) and the measured output y(n) where, :3’
Wb >
':: using (2.6), E is defined as e
‘ [ 4
t <,
39
N-1 Sy
§ E
2 E = % I e2(n) o
> i=0
E
;; , 1 N-1 R 2
> =5 L [yt - ym]®. (2.12)
i’ i=0 o
{4
A
&
: ' It can be readily shown [Kay and Marple, 1981] that the “'ﬁ”
S optimum coefficients are the solution of the matrix equation
i’n *
-1
?|, o oy -
v‘ E ‘-\f:
X 0
‘; [y)“ (Y] A = : (2.13) e
’ 0 z
X U -
At :
o
&
“; where, [Y] is equal to
£ ke
\L yi{p+q) .e.. y(0)
;i (Y] = : (2.14)
. o
) Y(N-l) LR Y(N‘p‘Q‘l) ﬁ'
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A is the vector of coefficients

and E is the mean-squared error.

Note that [Y]T[Y] is the covariance matrix of the measured
sequence y(n). It is also the Gram matrix [Jain, 1974] of the

~ d e
v
# =

set of vectors
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The vector of coefficients is then the solution to the matrix
equation in (2.13)., Using (2.12), the coefficients define the
characteristic polynomial

p+q s
viz) = .20 aizp+q 1 (2.17)
1=

and the poles are obtained as the roots of ¥(z).

Three classes of identification techniques can then be
defined based on the method used to solve the matrix equation
(2.13)

[c] a=[¥]"[y] &= . (2.18)

Qe ¢« OM

The first solution for the coefficients is obtained by inverting
[C]l. This is the method generally used when performing spectral
estimation [Morf (1974), Morf et al (1976, 1977, 1978).
Friedlander et al (1979)].

The second estimates the vector of coefficients as the
eigenvector corresponding to the smallest eigenvalue of [C].
This method was used by Van Blaricum (1978) and Van Blaricum and
Mittra (1978, 1980). The third, the pencil-of-functions method
developed by Jain (1974, 1980), estimates the coefficients as the
diagonal cofactors of [C]. Note that the pencil-of-functions
method is derived for the case where the error, in the case of
idealized measurements, between the model output }(n) and the
measured output y(n) is zero. It is related, therefore, to the
solution of (2.18) with E=0,




In the above formulation of the identification problem, the

o input poles would be identified together with the system poles. ‘
§: The system poles only can be identified by augmenting the set of s
5 vectors in (2.16) and thus [C] with vectors obtained from the ,
h input poles which are known (Rudko and Bussgang (1982), Jain i
X (1980)). The solution of (2.18) for the coefficients requires .
§; that the number of poles be known. The number can be estimated :
I based on the rank of [C] [Jain (1974, 1980), Chow (1972)].

'

. It should be noted that the pencil-of-functions method 4
" developed by Jain (1974, 1980) permits several refinements and '
;i improvements of the basic technique presented above. 1In parti-

cular, instead of using shifted versions of the vector y,; to form
v the set of vectors in (2.16) it uses the outputs of a cascade of J
J filters. As long as the input is passed through the same filters
as the output, no extra poles need be identified. Jain has also
developed a noise correction technique which improves the

g

performance of the pencil-of-functions method in the presence of
'
p noise (Jain, 1980). p

?‘ As mentioned above, the identification of the linear system v
i poles requires the factoring of the characteristic polynomial
U (2.17). It should be noted [Dudley, 1979] that small errors in
W the polynomial coefficients can produce large errors in the pole
NG locations. This is discussed further in Section 2.4.

f' Once the poles have been found, the system zeros or b |
£ residues must be determined in order to complete the identifica-
tion procedure. The system zeros may be found by using the
pencil of functions technique [Jain, 1980]. The residues can be

od

identified by minimizing the mean-squared error between the mea-
sured output y(n) and the model output y(n). Suppose that the
poles z3, ..., zp of the model have been identified and that the

o e g

poles of the input zp,)/, ...r Zp4q are known. Then, using (2.12)
and (2.13)
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P(z) R(z) _ _ P(z) R(z)
v(2) p+q
(z - z;)
1

f(z) =
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Performing a partial fraction expansion of Q(z) and taking the

o

inverse z-transform it follows that

&)

,,

e

where by, by, ..., b, are the residues of Y(z). The residues are
determined by minimizing

N-1 - 2
E= ] [y(n)-y(n)]° .
i=0

The solution (Kay and Marple, 1981) requires a matrix inversion:
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The performance of this technique in the case where the measured
output contains noise is analyzed in Section 2.4

2.3 PROBE WAVEFORM INVESTIGATION

The general problem of the synthesis of optimal inputs for
system identification is difficult and the general formulation
[Mehra, 1974; Mehra, 1976; and Mehra and Lainiotis, 1976] is
cumbersome to implement. Consequently, probe waveforms are
chosen on a more heuristic basis. 1In the choice of the excita-
tion the following factors need to be considered:

1. The excitation must be easy to implement in practice.

It must excite the system poles. Since the response
due to the system is the sum of decaying real or com-
plex exponentials, the identification is based on the
transient system response. This transient response
must be excited by the input.




tw :

)y ;
3. It must be adjustable so that, as a first step, it T

;;; will essentially only excite the linear part of the

¥ system.

3}« |
4, It must result in an easily analyzable and identifi- i

gi able output. é

%%: Based on such general measurements [Jain, (1980)] has implemented

o several classes of inputs which resulted in the successful iden- '

‘éﬁ tification of the system poles using the pencil-of-functions

;f% technique. These inputs included triangular waves, oscillatory

f%} pulses modulated either by a decaying exponential or by a nega-

A tive slope ramp, square pulses and exponentials. The choice of

;{ input does not appear to be critical as long as the factors above

}33 are satisfied and the bandwidth of the input is larger than the

E bandwidth of the system (or portion of the frequency response )

range of frequencies) under test.

:.:g( 2.4 IDENTIFICATION ERROR ANALYSIS

ﬁ#v As discussed in Section 2.2, system identification based on .

Qi‘ transient analysis requires the following steps: )

;5 - The calculations of the covariance matrix ([C] (Equa-

A tion (2.18) i

' - %

3 - The determination of the number of poles,

) «

: % - The estimation of the coefficients of the characteris- ;

tics polynomial (Equations (2.10) and (2.17)),

LS
'

L

The factorization of the characteristic polynomial in
order to determine the poles,

-
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The estimation of the zeros or residues of the system
function.

I1f, as is true in practice, the identification is based on _
noisy measurements each one of these steps may produce erroneous T

o results, The elements of the covariance matrix will contain
tg” noise components. As a result an incorrect number of poles may :
SE be determined. 1In such cases, the coefficients of the charac-
" teristic polynomial and, consequently, the identified poles will, e
5t in most cases, be far from the true values. If the number of

poles is determined correctly, the error in the identified pole
o locations can still be large even if the coefficient errors are
&; small. Consider an example presented by Dudley [1979]). Suppese g
X that the system has three poles and that the characteristic

polynomial is given by

i
R S

jm=g 1

s

Ry

= ~-1,662, a, = 5,036, a, = ~-5,349, a, = 2,0 .

) 1 2 3

The poles, which are the roots of the polynomial in (2.23), can
be calculated to be

zy = -0.08780, z, = -0.04866 + j 0.3947 ,

z3 = -0,04866 - j 0.3947 .

oo fah”'ﬁwiésg%§§uu««33 %@ﬁ&k N §a§&ﬁ



If the coefficients are estimated to be

:‘l p = - F = 1 =
i ao 1.669' al 5.036’ az = -5.348' 83 2.001

’

N the identified pole locations become

-~

z,= -0.06692, z, = -0.05725 + j 0.4030,

Y

Ny 24= =0.,05725 - j 0.4030

2.0

A
e The largest relative error in the polynomial coefficients
) is

29~3p
29

X 100 = 0,42% ,

y However the largest errors in pole locations z; and z, are
3 -
%1

X 100 = 24%

1
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It can therefore be observed that the errors in coefficients have
been strongly magnified. Note the error amplification described
above is of primary importance only if the desired result is the
locations of the system poles. 1In the context of present study,
however, it is desired to estimate parameters such as harmonic
distortion and intermodulation which are related to the frequency
response of the system, As will be shown in Sections 3 and 5,
the frequency response may be accurate even though the pole
locations may have large errors associated with them. This can
be justified by the- fact. that the frequency response is
determined by the characteristic polynomial (and thus its
coefficients) and not by the locations of individual poles.

Finally, the 1linear identification is completed by calcu-
lating the residues or zeros of the system function. The zeros
may be identified using the pencil of functions method. The
values obtained are essentially independent of the identified
poles [Jain (1980)]. The residues are identified by minimizing
the mean-square error between the system output y(n) and the
approximate output (2.20)

N ~
Y b, 2" (2.24)
gy 2%

where, ZyreesrZy are the poles which have been previously
identified. Since the identified poles are used in the deter-
mination of the residues, the residues can in some cases compen-
sate for errors in the poles,

It should be noted that the final step of nonlinear
transfer function identification based on transient measurement
requires the determination of the residues or zeros of the non-
linear transfer functions. This can be accomplished using the
same technique as for the identification of the linear system
residues or zeros.
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In the next section, we will discuss the nonlinear transfer »
function (NLTF) specification parameters. We will also present o
; results that apply to the general identification and EMC specifi-
g cation parameter prediction problem.
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SECTION 3
NLTF SPECIFICATION PARAMETER INVESTIGATION

Air Force C31 systems can suffer degradation due to intra-
system nonlinear mechanisms that are usually associated with the
co~location of multiple transmitters and receivers on elec-
tronically dense platforms, The nonlinearities can occur in
transmitters, coupling paths and in receivers. Together the non-
linearities generate a spectrum of unwanted interference signals
which degrade the desired signal spectral fidelity and EMC per-
formance, The EMC specification parameters such as harmonic
distortion, gain compression, intermodulation, cross-modulation
and spurious response can be expressed in terms of nonlinear
transfer functions (NLTF). The NLTF (Volterra transfer func-
tions) in turn can be expressed as functions of the 1linear
transfer function (LTF). In this section, we will investigate
the features of the NLTF and the specification parameters for the
general problem. The "rusty bolt" path nonlinearity which is a
special case of the class of nonlinear systems where the lumped
parameter circuit contains zero-memory nonlinearities between
circuit nodes is discussed in Sections 4 and 5. We will begin
with a discussion of nonlinear systems,

3.1 RELATIONSHIP OF SPECIFICATION PARAMETERS TO NLTF AND LTF

Traditionally, the EMC community has primarily used power
series to analyze nonlinear systems, In the following discus-
sion, presented for background purposes [Graham and Ehrman
(1973), Weiner and Spina (1980)), we will use power series to
illustrate the EMC specification parameters. We will then intro-
duce in the next subsection the Volterra series, the Volterra
NLTF's, and the relationship between the EMC specification param-
eters and the NLTF.
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3.1.1 Nonlinear Systems Without Memory 'f

3 In almost all cases of interest in communications system
), analysis, the input to the system is the sum of a desired and one
or more interfering signals. These signals interact in the

= nonlinearities to produce various types of responses. The most 7

‘3 common of these responses are given names so that they can be '

% easily referred to, e.g., intermodulation, crossmodulation, com-

A pression, and desensitization. In this section we will cate-

. gorize and give examples of these effects. The thrust of this g

? discussion comes from Graham and Ehrman (1973). To begin, con-

% sider a nonlinear system represented by the power series:

T

L 1

gty = I a x(t)" (3.1)

i n=1 :

2

- The system has no memory since the output at time t depends only =

% on the input at the same instant. Let the input, x(t), be the

% sum of S;(t), a desired signal, and I,(t) and I3(t), two inter-

g ferences. The output, y(t) is then:

X 3

!

B y(t) = a,[8,(t) + I, (¢) + I4(t)]

! § |

» 2 ]

¢ + a,[s,(t) + I,(t) + I4(t)]

R

+ ay(s,(t) + I,(t) + I4(t)]

& LN

R L] o

- b3
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3.1.1.1 Gain Compression and Desensitization

Now let us specialize Equation (3.2) to certain cases.
First let

Sl(t) = S1 cos mlt,
Iz(t) = I2 cos wzt,,

That is, S;(t) and I,(t) are unmodulated tones. Then:

3a 3a
y(t) = a,s, [1 + 3524+ 3 2] cos u,t
1¥1 1 2 1
4a1 2a,

+ terms at other frequencies.

Equation (3.4) demonstrates that the output at the signal fre-
quency is made up of three terms. The first term, of amplitude
a8y, is the desired linear response. The second term, of ampli-
tude 3/4 a3813, is the third order compression term. If the sign
of a3 is opposite that of a;, the desired signal output will be
smaller than that predicted by linear theory by the amount 3/4
a3sl3. The third term, of amplitude 3/2 a3122 Sy, is the third
order desensitization term. If the sign of a3 is opposite that
of a; the output will be smaller than that predicted by linear
theory.
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3.1.1.2 Crossmodulation

Assume:
§,(t) = 8; cos wt,
I,(e) = I, [1 + m(t)] cos w,t; m < 1,
I5(t)

That is, S;(t) is an unmodulated tone, and I,(t) is an amplitude
modulated signal. Then:

3a 3a 3a
y(t) = 3151[1 + EE% Sl2 + 7;% 122 + EI§ 122 m(t)] cos w t

+ terms at other frequencies.

Equation (3.6) includes the desensitization and compression terms
of Equation (3.4) plus a new term, (3a3/a]_)122 m(t). The new
term represents crossmodulation, that is, a transfer of the mod-
ulation m(t) from the interference to the desired signal.

gl AT DRI AT L LWV R Y, e
Ry ‘-.‘f a}w #""r;‘:‘,‘ﬁ-‘}'# -»}-\i, . ".(‘:,3,\, b , -,-$ %

AN NN Y .;E% gl ‘il-\ L Sk 4 b‘- [ I "i‘, N 20 AN AAR ‘g‘ it ‘L



" N . T gt % bl g B
R R R Rt 2T S A s Wk AT s

S

5 PN Ttk

4
-,

Y 8 &4

o
‘0

3.1.1.3 Intermodulation f

Assume:

£
s
pa i g on ol

Sl(t) = S1 cos mlt,

Iz(t) I2 cos w,t, (3.7)

o N

Rurrrn
WA G g -

13(t) = I3 cos w3t.

O P d)
1 iﬁ"‘.
. A

. A
. A Mt a0

F- .7 d

That 1is, the desired signal and the two interferences are
unmodulated tones. Then '

3a 3a
_ 3 2 3 2 2
y(t) = a;s; [1 + [ 5,° + 3;; (1,° + 13°)] cos w;t

g
r p. 1“’.;

+ a,I,I; [cos (w, + wy)t + cos (w, = wy)t]

Lo

» e
o
o3

3
a, [I2

2
I, cos(Zu2 t wy)t + 1,1, cos(2w, 2 mz)t]

+ terms at other frequencies. (3.8)

The terms in Equation (3.8) at frequencies w,  wy are second

]
- : order intermodulation terms. The terms at 2w, + w3 and 2w, % w,
;L“ are third order intermodulation terms. If any of the frequency
f.é combinations fall in the system passband, they will be processed !
ﬁ& by the remainder of the system following the nonlinearity in the ‘

same manner as the desired signal. Third order intermodulation

3-5
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can be a serious problem if w, and w, are near the system pass-
band. Second order distortion is usually a less serious problem
in a receiver, since either one or both of the interference fre-
quencies must be far removed from the system passband for
w, * wy to equal W,

The examples given in this section have, for introductory
purposes, been in terms of real signals and a zero-memory power-
series nonlinearity. In the next subsection we will introduce
the Volterra series. It will also be shown that the specifi-
cation parameters such as intermodulation, harmonic distortion,
etc., are related to the Volterra transfer functions.

3.1.2 Nonlinear Systems With Memory

The analysis in the previous section assumed that the non-
linear system was memoryless. In many cases this is not so and a
valid analysis should take this into account.

Suppose that the nonlinear system can be described by a
Volterra series. Then, the system is described by the time
domain input-output relationship.,

y(t) = 1 y (¢t)
n=]

n
Lt g e )

x (t - u,)du
— {=1 i i
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s or by the input-spectrum/output-spectrum 'relationship
vy .
% P
:% @ [ [ J ’ ' ’ ‘f
Z' Y(£f) = 2 I ceoe I Hn(fl'...’fn)x(fl)' soey x(fn) .
n=] - -0 t
g ¥
.* 6[f - fl = eee = fn)dfl X} dfno (3.10) ’»"
5 £y
-
&
]
gif‘ One of the most important multiple signal input waveforms
'f‘; . N ""
o for a nonlinear system characterized by a Volterra series is the
3{ sum of several unmodulated tones. If we express M/2 tones as the :
‘ sums of M exponentials of complex amplitude A, and frequency £, E
. we have
T
! h
2 M jonf ¢ i
1
| x(t) =3 L A e . (3.11) 1]
Py m=1 o
j
% Since x(t) must always be real, f; will include identical posi-
-;‘j tive and negative frequencies, and A, for a negative frequency 2
; will be the complex conjugate of A, for the positive frequency.
'Et A real signal is the sum of a positive frequency complex signal
» B
W and its negative frequency complex conjugate. Alternatively, a
‘. real signal is twice the real part of either the positive fre- !
, quency complex signal or its negative frequency complex con- "
) jugate. The frequency spectrum of this x(t) is
! &
N
X 1 %
i X(£) == ] A S(f - £) (3.12)
{::: 2 m m “‘
|
i’
s
."'33 ‘
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where &(f - £ ) is a unit impulse at £ = f, in the frequency
domain.

badadad o Kok
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Since, using (3.9), the system response y(t) may be written

o

in the form

y(t) = ¥y (¢),
n n

where the various y,(t) are the individual terms in the Volterra
series of the system output. Our objective is to determine the
various order responses y,(t) in terms of the nonlinear transfer
functions of the system. For example,

by inspection from Equation (3.11), where H,(f) is the linear
transfer function of the system at frequency fj. The n-th order
output can occur at many frequency combinations, depending on the
number of complex inputs, M, and the order, n. A general expres-
sion for the output frequency, denoted by fz y is

fz = mlfl + m2f2 s e e + meM'

where m;, m, ... my are integers ranging from 0 to n, and

i
m. = n,
i=1 !
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Define the vector m as

E = [ml, m2, se ey mM]o (3.17)

For x(t) given by Equation (3.11), the nth order output is then
given by

1 j2xf et
yn(t) =35 I B (m) H e ' (3.18)

where the m under the sum indicates that the sum includes all the
distinct sets {m;} such that m; < my,y and Equation (3.16) is
satisfied and

n!ATl A';z A=M

B (m) = ’ (3.19)
n- n=-1
2 mllmzl cee mul
and
Hn = Hn(fl' oooflp f2'...f2' se oy fM'ooofH)o (3020)
m, times m, times my, times
There are
(M +n - 1)} (3.21)
nti{(M - 1)1

3-9
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" distinguishable combinations of m; satisfying Equation (3.16) so ;
‘3 that there will be (M+n 1) terms to sum in Equation (3.18) for A
E; each ntM order nonlinear response, For example, if there are M=4 :
;'é complex exponentials in x(t) and we are interested in the n=2, or ;
second order response, we can expect to sum L ;
b
b ST " 7ieT - 10 (3.22) ;
T
" terms. For n=3, the third order term, there will be 20 such com-
- ponents. :
. The essential point to note here is that the complex ampli- E
tude of each of the spectral components in Equaticn (3.18) is ”
'.f given by the product B,(m) H, where B,, given by Equation (3.19), i
v, is dependent on the input signal amplitudes A, and is independent >
. of frequency. The frequency dependence of the component is i
9:: entirely given by H,, the nth order nonlinear transfer function. {
.;gj It should now be evident that the key step in characterizing the o
::‘ output terms of a nonlinear system with memory resides in deter- v
- mining the magnitude and phase of the multi-dimensional transfer 3
% functions H.
b When the nonlinear system has no memory it can be satis-
-' factorily characterized by a power series H,=a,, the coefficients -
;:; of the power series. It follows then that the preceding discus- :
: . sion also applies to a power series nonlinearity. In that case
:‘: the nth order response components of the power series can be ob- 4?
: tained by simply replacing H, by a, in (3.18). '
3.1.2.1 Two-Tone Input Example
Multi-tone testing of quasi-linear (almost linear) systems |
is widely employed to characterize the nonlinear distortion. The '
! 3-10
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QE most important case is two-tone testing. In this section we ;
bl shall utilize the general results of the previous section and 2
{15 show by an example how to obtain the output terms of a nonlinear ;
b1 system excited by two sinusoids. We have ¢
;
1 jane e jame,t 7
.3 x(t) = 3 [Ale + Aze %
N N s

iﬁ + A; e eyt + A; e Jz!fzt] , (3.23) E
& o . i

Ay where we now identify M=4, A3 = Al' A4 = A2, and f3 = 'fl'

Eﬁ:. fq4 = -f, by comparing terms in Equation (3.23) with Equation

g (3.11). Since M=4, m;,m,,m3,m,; must satisfy i
) .
‘?.‘ m, + m, + + my = (3.24)

::g 1 2 m3 4 n. .

%

for non-negative integer values of m; for each nonlinear order n,

?2& Using (3.21), four combinations of m; for n=1, ten for n=2, and :
;;; twenty for n=3 will satisfy (3.24). 3
Eg) The first and second order output components are listed in

5) Table 3-1 ([Bussgang, Ehrman and Graham (1974)]. The frequency -
ﬁ': combinations of m; associated with each response are noted. Note ’
é‘: that both negative and positive frequency terms are present and

130 that the complex amplitude of each negative frequency is the '
f ; complex conjugate of each positive frequency term. The type of !
3-$? nonlinear response is also indicated in the last column of the ;
{}: table, No DC terms are generated by any odd order n. Also note d
% that for every positive frequency term there is a corresponding i
.!f negative frequency component with a complex conjugate !
F;g amplitude. The physical output of such a system is one half the ?
‘:ﬂ sum of both the positive and negative frequency components and ‘
T will always be a real function. Of course, one can take the real f

part of the positive frequency terms and get the same result.
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TABLE 3-1
PIRST AND SECOND ORDER NONLINEAR RESPONSES

COMBINATION COMBINATION PREQUENCY AMPLITUDE
m my my OF RESPONSE OF RESPONSE

Az 1y (£3)
Al‘ H) ("fl)

Ay* Hy(~f3)

AAy Hy (£, )
AjAg® Hy(fy, =f))
Ap* Hy(-f), ~f5)
AjAyt Hylfy, -f))
[A112 By (£). -£1)
|az12 uyte,, -£5)
1/2 A2 Hytfy, £))
172 A2 Hy(E,, )

1/2 A1*2 Hyt-£y), -£))

172 A;*2 uy(-fy, ~f)

TYPE
OF RESPONSE

Linear

Second Order
Intermodulation
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Each of the n=1 terms is a linear response. Four of the
n=2 components are second harmonics and the remainder are second
order intermodulation terms. Two of these are at DC.

The third order output components are listed in Table 3-2.
Again the frequency, complex amplitude, and particular combina-
tion of m; associated with the response is noted. We have also
identified in the last column the type of response. Note the
presence of terms causing third order gain compression and de-
sensitization of the linear term at the input frequencies f, and
f,. There is also a set of third order intermodulation products
as well as a set of third harmonics.
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These results can be extended to higher order non-
linearities.

78
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Finally, let us write out explicitly the terms at a
particular output frequency as a further illustration of the in-
terpretation of Tables 3-1 and 3-2, At frequency f,, we have six
responses, three at positive and three at negative frequencies.
The positive frequency terms are the linear response (1,2) and
the two third order components (3,1) and (3,10). The first
number in the parenthesis denotes the order of the response (n)

LSPGO

and the second number in the parenthesis indicates the
combination number 1listed in Tables 3-1 and 3-2. Hence, at
frequency f,,

y(e) =3 [am(£,)

2
j2ﬂf2t

2
|a, | A H (E,,E,,-E,)]e

C.C., terms.
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COMBINATION
NO.

TABLE 3-2
THIRD ORDER WONLINEAR RESPONSES

COMBINATION
By ®m; m3

PREQUENCY
OF RESPONSE

AMPLITUDE
OF RESPONSE

fiefa-f1of;  3/2 A2 B3(e).65,-0))
£a-€1-Fm-f) 3/2 A *|Ax)2H308,,-8,,-€)
£,-£)-fa5-f, 3/2 |A;)2 AjtH(t,,f,, ;)

£465-F0f) 372 Aj|Ay]2 Half),Eg,-F5)

2¢ )4, 3/4 A 2 Ay Hy(E), 8y, E5)

26,-f) 3/ Ay A2 Hy(fy.84,-f))
“2£,-F)  3/4 Ap*2 Ay* Hy(-fy,-f),~f;)
£,-2f, 3/ Ay Ay*2 Hy(f),-F,,-£;)
26,-€,%8, 374 Ay|Ay|2 Hy(fy,E,-f))
2,-f,0f,  3/4 Ay|Az|2 My (£,,£5,-F5)
£3-21y0-1)  3/4 |Ay]2 A)* H3tE,-f)mfy)
£2-2f%-f, 3/4 |Ay}2 Ay H3(f,,-E5.-F5)
2f, -, 374 A2 Ay® Hylf),£),E3)
£,42f, 3/4 Ay A2 Ha(f),£9,85)
£,-2f; 3/8 Ay A2 Hy(Ey,f) ;)
~£)-2f,  3/4 Ay* Ap*2 Hy(-f),~f5,-f5)
3, 176 A3 B3(fy,1),8))
3, 174 A3 Hy(f,,.£5,85)

-3t 1/8 Ap*3 ny(-£,,-£,,-£))

1/4 A*3 Hy(-~f5,~£5,~£3)

TYPE
OF RESPONSE

Third Order
Desensitization

Third Order
Intermodulation

Third Order
Compression

Third Order
Intermodulation

Third
Harmonic
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where, the notation "c.c. terms" indicates the complex conjugates
necessary for a real output signal. Alternatively, y(t) is given

by

- 3 2 -
y(t) = Re{[Azﬂl(fz) + 3 |A1| A H (£, ,E,, fl)

) joE .t
2 |A2| A2H3(f2,f2.-f2)]e

2}.

The first term is the small signal linear response, the second
term is the desensitization at frequency f, caused by the signal
at f,, and the third term is the source of the compression of the
f, term generated by the amplitude A,.

3.1.2,2 sSpecification Parameters

3.1.2.2.1 Gain Compression/Expansion

It is possible to predict gain compression or expansion
using small signal theory involving third order nonlinear trans-
fer functiohs. According to the small signal nonlinear theory
outlined in Section 3.1.1, the complex amplitude of the output
signal of a system excited by a single tone of amplitude A at
frequency f is

AH) (£) + % A |a]? Hy(£,£,-€) + ... (higher order terms). (3.27)

The observed gain is the ratio of output amplitude to input am-
plitude at the input frequency. From Equation (3.27) the
magnitude of this ratio is

8% l'l i ,tzl.a : |;ﬂ,t; Vi
N
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H(f,f,-f) 4
. 3 2 31Cre 2 11/2 i
) + [I lAl Im { H.(f) }] ] . (3.28)
) 1
DL o
;g
S
1
' Gain compression or expansion appears as the factor multiplying I
e H; in Equation (3.28). 1In many cases Hj is real and it will be %
i% possible to drop the last term of the second factor so that the @
by gain “compression" factor becomes ¥
%; €
N H,(f,f,-f)
B 3 2 3'vret 1
v, ¥_. —-—
qu [1+ 5 |A]° Re { a0 - (3.29a)
3 ‘
1§ :
, H
s The initial effect observed as the signal level is increased will :
i; be expansion if the sign of Re{H3/H;} is positive and compression %
ii if the sign is negative. The cases in which the approximation g
e
involved in (3.29a) are most inaccurate are those where Hy(f, £, a
}; -f) and H;(f) are nearly in quadrature. Equation (3.29a) permits
:ﬂ calculation of predicted compression/expansion for small signal
JZ levels where nonlinearities of order higher than three can be
( 1 neglected. g
<  The gain compression/expansion factor in dB, x, is
%;
oA
i x = 20 log s [1 +3 |a|? re {3} ], (3.29b) kL
10 4 Hl 'mt
w
where the arguments of Hy are f, f, -f and of H, is f. v
' &

P 3-16




L G ICTAOR IR N AR AT 2 BTN TR UR \ e LR [T RRV

-

VAR
b o Al

Aeten. 1 P 4
Pl LA

» o g ‘*A
&

#

3.1.2,2.2 Intermodulation, Harmonic Distortion and Desensitization

Tables 3-1 and 3-2 specify the second and third order
intermodulation at the output of the system when the input is the
sum of two tones. The Tables also specify the second and third

P el a0 "l
e WJ" A

harmonics and third-order desensitization. Expressions for the
specification parameters shown in Tables 3-1 and 3-2 involving
non-linear transfer functions higher than third order can

WL e
Pl

similarly be derived.

3.2 SENSITIVITY ANALYSIS

In Section 3.1 we related the EMC specification parameters
to the NLTFs. As discussed in Section 2.1 the NLTFs themselves
are a function of the LTF. It is therefore possible to analyze
the effects of LTF identification errors on the NLTFs and on the

specification parameters.

A common method for measuring the gquality of the
identification technique is the normalized mean squared error
(NMSE) . If h(t) is the system impulse response and H(f) its

R

Fourier transform then the NMSE is defined as

ol

A% .
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nMsE = [ |n(t)-h(t)|2at/ [ |n(e)|2ae
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where a(t) and H(f) are, respectively, estimates of the system
impulse and frequency responses,
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In order to evaluate the effects of errors in pole loca-

S g A e

tions on the quality of the linear identification as measured by

%g the NMSE and on the nonlinear specification parameters consider §
%3 the following example. ;
o 3.2.1 Two Pole Example f
S%: Suppose that the linear transfer function is given by ;
B2 ;
42 -
';5:3: H)(8) = ToTT(s%T0T = 5T * 10 ° (3.31)
pa ‘
. Tables 3-3 and 3-4 show the results of identifying the \?
::? system using a technique based on the pencil of functions method i
§;. [Rudko and Bussgang (1982)] for different values of signal energy
ot to noise energy ratio (SENR). Two separate identifications were
performed. 1In the first, referred to as the optimized identifi- i
;%‘ cation, the iterative identification technique developed by Rudko é
2 : and Bussgang (1982) was used. In the second, referred to as the §
LL non-optimum identification, the sampling rate and the number of H
fs samples used were not optimized and both poles were identified at ;
;1 once. The purpose of the second identification was to permit the
fi evaluation of the effect of larger errors in poles on the linear
> NMSE and on the nonlinear specification parameters. 1In practice,
e if no a priori information is available as to the 1locations of ’
g’ the poles the performance of the identification may be close to :
Eg that of the non-optimum case. The residues were calculated as
ﬁ& described in Section 2.2 by minimizing the mean squared differ-
?é ence between the true and the model outputs. Figure 3-1 shows :
3‘ the relationship between the NMSE and the signal to noise ratio I
%‘ for both cases. Note the improvement in performance in the %
s optimized case. Also, examining Tables 3-3 and 3-4, the NMSE 3
v d
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: ] Table 3-3

. 9

Ry Optimized Identification of the System H,(8) = TooTITa3T07 °

3
J 8 = -1 R} = 1.0
‘ TRUE POLES TRUE RESIDUES
s, = -10 Ry = -1.0
[
N SENR No. of I.D. Identified Identified N.M.S.E.
{5 (aB) Poles Poles Residues
L
Y
10 2 -3.53 3.59 .23
-7 -3.66
N 20 2 -1.57 1.36 4.62 x 1072
-9.85 -1.39
|0
;g,_o 30 2 -10.15 -1.07 2.83 x 1073
o -1.11 1.07
AL
Yol -3
M 40 2 -10.07 -1.02 2.36 x 10
W -1.03 1.02
A
b -
;;r, : 50 2 -10.02 -1.01 2.64 x 1075
3;: -1.01 1.01
e
O 60 2 -10.01 -1 2.46 x 1076
‘t' -1.01 1
' 4
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Table 3-4

Non-Optimized Identification of the System Hy(s) = 2

s+ s+

s = -1 Rx = 1,0
TRUE POLES TRUE RESIDUES
sy = =10 Ry = -1.0

No. of 1.D. Identified Identified N.M.S.E.
Poles Poles Residues

.28
.27

1.59 x 10~2

7.86 x 10~5
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® NON OPTIMUM IDENTIFICATION

Figure 3-1 Relationship between NMSE and SENR
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appears to be proportional to the errors in pole locations ][
f although the percentage errors are different. As will be pointed i
§ out below this is not always the case. %L
53 To evaluate the effects of linear identification errors on o
, the nonlinear specification parameters the third order transfer !E
f function was assumed to be given by 3
3
> ¥
£ b
. Hy(s,,8,,8;) = -k3H (8)H (8,)H (8;)H (8 +8,+85).  (3.32) F
3
3 This form permits the direct evaluation of the third harmonic and
‘ intermodulation specification parameters based on the identified 5
.% linear transfer functions. hi
N The magnitudes of the true and predicted third order :
e harmonic and intermodulation for the non-optimum identified pole %5
W at a SENR = 10 dB are shown in Figures 3-2 and 3-3. The error %f
% between the true and predicted third harmonic specification i;
ﬁ parameter varies from 0 to 55 dB for the frequency range shown, g;
B The error in predicting the third order intermodulation varies .
» from 0 to 32 dB. The error in predicting the EMC specification =
ii parameters is large because the linear transfer function is
¢ severely misidentified. The number of poles in the linear
:“ transfer function is misidentified and the identified pole is 75 -
o percent in error. The NMSE for this case is 33.4 percent. The .
%i precise relationship between NMSE and the predicted EMC )
‘g specification performance is not clear in this case. 1In general, f
2 however, if the NMSE is large, the prediction of the nonlinear ¥i
performance will be poor.
True and predicted third order harmonic and intermodulation
EMC specification parameters for optimized pole identifications
- are shown in Figures 3-4 and 3-5, Harmonic and intermodulation =
it '
. 3
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results with poles identified with SENR of 10, 20 and 40 dB are
shown in the two figures. Clearly as the SENR increases, the
poles are identified with greater accuracy and consequently the
predicted nonlinear performance improves. The error in predicted
nonlinear performance for the case where the poles are identified
with a SENR = 40 4B is about a constant .7 dB across the whole
frequency band shown in Figures 3-4 and 3-5. The NMSE for this
case is about .24 percent. The error in predicting nonlinear

performance for the case when the poles are identified with a
SENR = 30 dB is about 2.5 dB and the error when the SENR = 50 dB
is about 0.2 dB. These two cases are not shown in the figures.
The NMSE for the SENR = 30 dB case is 0,29 percent and for the
SENR = 50 dB case it is 2.6 x 10”3 percent, If we compare the

error in predicting the nonlinear performance for the cases where
the poles are identified with SENR's of 30, 40 and 50 dB with the
NMSE of each case, we see that the errors are somewhat propor-
tional to each other, but the constant of proportionality varies.
For the cases discussed, small NMSE implied small error in the
prediction of the nonlinear performance. However this is not
always the case as we see in the next example.

3.2.2 Three Pole Example

In the preceding examples the errors in the nonlinear
specification parameters were somewhat proportional to the NMSE
and the errors. in pole locations. This is however, not true in
all cases. Consider the following example.

891 1 =1,1

= = 1
~ (s+1)(s+10) (s+100) s+1 + s+10

—

H(s) + s+i0
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? Suppose also that only the two lower frequency poles are identi- Lt
fied and that the identified system function is equal to
n’ :‘.',;’,
: - 0.1(s-89) _ 1.0 . =1.1 %
ﬂ = —Ve - = L B it 3 ) :":‘
X Bis) = To41)(s+107 ~ s+1 * 5+10 (3.34) o
L
" The Bode plots of the frequency responses of the true and identi-
fied systems are shown in Figure 3-6, Note that the true and
identified frequency responses coincide for w < 89 and are =
" ooy
2 different only for w > 89 where the two curves have different ,i‘,’\,*
i slopes. %@
The NMSE was calculated in this case as ';é
3 f2 - 2 ?
4 £5|neg)-nee) | “at
. 1
: NMSE = r 0¢ £,< fo< (3.35)

£
£3|nce) | 2as
1

L for £, = 0, f, = 100 Hz or 0 < w € (2¢)(100) = 628 rad/sec. It

y was found to be very small, namely
¥ NMSE = 1.22 x 10~% or 0.012%,
1
f> The identified system function was then used to predict the j..
. intermodulation and the harmonic distortion of a third-order ?
; nonlinear system whose third-order transfer function is equal to o
t - e
H3(f10f2'f3) = -k3H1(f1)Hl(fz)Hl(f3)Hl(f1+f2+f3) (3.36) &%
5
i and where it was supposed that the coefficient k3 was identified 'ﬁf
% correctly. The true and predicted third-order harmonic and i-'
* intermodulation are shown in Figures 3-7 and 3-8, respectively. A
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Observe that the errors in the nonlinear specification
parameters are much larger than the linear system NMSE. 1In fact,
for certain frequencies they are as large as 20% whereas the NMSE
was 0,012%, Therefore in this case, the linear system NMSE can-
not be used to predict the accuracy of the estimated nonlinear
specification parameters. Several additionional conclusions and
observations can be drawn from this example.

The NMSE is insensitive to errors in frequency response in
the skirts (outside the passband) of the filters. 1In general, it
is insensitive to errors in regions where the amplitude of the
frequency response is low.

This conclusion can be further confirmed by calculating the
NMSE over a frequency range which includes only the skirts of the
filter. The NMSE was calculated using Equation (3.35) for the

identified system whose frequency response is shown in Figure 3-6
between f; = 10 Hz and f, = 100 Hz or equivalently for

62.8 < w < 628, The resulting NMSE was found to be 0.168 or
16.8%., This value is indicative of the percentage errors in the
predicted nonlinear specification shown in Figures 3-7 and 3-8.

The above also points to the rather obvious fact that the
identified frequency response outside the passband is important
in the estimation of the nonlinear specification parameters.

Finally, we can conclude that the linear system NMSE cannot
reliably predict the accuracy of the estimated nonlinear specifi-
cation parameters.

From this example, it appears that a segmented NMSE
calculated over separate frequency bands such as the passband and
the skirts of the filter provides a better prediction of the
accuracy of the nonlinear specification parameters than does a
global NMSE calculated over the entire frequency range of
interest. The specification of the exact procedure to be used
would need to be included in a further study.
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! It is however clear that a NMSE segmented in fregquency, N
| that is calculated over several frequency bands, rather than the {
:E error in pole location should be used as a specification criter-
:3,:, ion. 1In practice the errors in pole locations cannot be used for '
‘s two reasons. First, the true pole locations are not known in J
‘,‘» practice. Second, the error in pole locations is difficult to .
D specify if the number of poles is misidentified. .
"
:ﬁ In this section, it was shown that direct linear identifi-
- cation can be used to identify (estimate) the nonlinear transfer
f;{:.;‘ functions (NLTF's) and from this EMC specification parameters
W performance such as harmonic and intermodulation distortion can
‘ be predicted. The “"rusty bolt" is a nonlinearity which occurs in
the coupling path between colocated transmitters and receivers.
'; This nonlinearity can cause severe degradation to the operation
3 of Air Force C31 systems, The identification of the 1linear
;:: transfer function of the rusty bolt is complicated by a highly
dominant direct path transmission signal. The identification
,d'“ techniques discussed in Section 2 and the procedure used to
23;1 predict nonlinear performance in this Section 3 cannot readily be
*‘ used, The rusty bolt problem needs special consideration and
)' attention, The rusty bolt problem and identification is 1
discussec in Sections 4 and 5.
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SECTION 4
THE 'RUSTY BOLT' PROBLEM

Nonlinearities in transmitters, receivers, or in the coupl-
ing paths ("rusty bolt" effect) between transmitters and
receivers can cause severe degradation to the operation of Air
Force C3I systems.

The Air Force CS3I platforms, such as the E-3A (AWACS) and
E-4B, contain a large number of collocated transmitters and
receivers. There is a recognized interference problem in these
dense electronic platforms due to harmonic and intermodulation
interference caused by the nonlinearity of metal-insulator-metal
(MIM) or metal-oxide-metal (MOM) junctions in the structure.
Although the surfaces involved can be distributed in nature, the
junction is colloquially called the “rusty bolt". When these
structures are irradiated with high density electromagnetic
signals (RF fields) from transmitters, RF currents are induced
into the junctions and a voltage is generated across the non-
linear element in the structure. The MOM and MIM junctions have
nonlinear current-voltage characteristics (i.e., nonlinear impe-
dance) which are primarily due to electron tunneling effects. We
will discuss the physics and properties of the MIM junction
("rusty bolt") in Appendix B, The nonlinear qharacteristics
cause harmonic, cross modulation and intermodulation (IM) pro-
ducts which'couple to a re-radiating structure. The nonlinear
products which fall into passbands of nearby receivers degrade
system performance.

The IM interference problem can be particularly severe in
airborne collocated systems because of the relatively small plat-
forms. Power level differences between transmit and receive
signals can exceed 170 dB. Highly sensitive wideband receivers
are particularly susceptible to intermodulation (IM) distortion
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because the IM power level can reach or exceed the level of the
receiver noise power. The following example will illustrate the
problem. Suppose that we have an airborne receiver with a sen-
sitivity of about =110 dBm, a local transmitter power level of
50 Wwatts and a requirement that IM products be 15 dB below signal
level. This would require IM levels about 172 dB below transmit-
ter power level. These 1low levels of IM power requirements
clearly indicate that passive nonlinearities in the coupling
paths between collocated emitters and receivers on airborne plat-
forms can be a primary factor in limiting system performance.

One of the objectives of this contract is to investigate
the identification or estimation of nonlinear transfer functions
and their use in the development of EMC performance specifica-
tions for the Air Force C31 systems. Of interest is the develop*>
ment of a simple circuit model of the "rusty bolt" (MIM junction)
and the nonlinear transfer functions that are to be used in the
analysis. In this section, we obtain an equivalent circuit for
the MIM junction and the nonlinear Volterra transfer functions up
to the fifth order. The Volterra functions are derived in
Appe :dix C. The Volterra functions discussed in this section can
be manipulated to an equivalent symmetrical form.

4.1 "RUSTY BOLT' MODELING

It is important to find a good compromise between accuracy
and simplicity in modeling nonlinearities such as the rusty bolt
(MIM junction). The i-v characteristics of MIM junctions have
been investigated by many authors, [Simmons (1963), Forlani and
Minnaja (1961) and Bond et al., (1979)]. 1In Appendix B we dis-
cuss the electric tunneling effect for a metal-insulator-metal
(MIM) junction.

.
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Some authors think of the MIM junction as a pair of back-
to-back diodes with an antenna system as shown in Figure 4-1.
The i-v relationship of the back-to-back diode pair is then ap-
proximated as

neglecting nonlinear capacitive effects (Uslenghi, 1980]. Values
are given to the constants k; and k3 to match the computed and
measured results. Other authors define some ideal nonlinear
element, usually memoryless, without any reference to any real
existing device. ’ '

A commonly accepted and more sophisticated lumped parameter
equivalent circuit for a MIM junction was used by Long and
Schwartz (1974). It is shown in Figure 4-2, An antenna and a
shunting capacitance apply an a.c. voltage across a nonlinear
resistor. The antenna is representédwby“its Thevenin equivalent
impedance 2_,. The junction is modeled by a juncfion resistance
rqy in series with a parallel combination of afjunction capaci-
tance impedance zZ_, and a circuit element with noplinéar current
characteristic 1i,.(v). The capacitance is considered to be
linear. This is not unreasonable since measurements by Bond, et
al. (1979) on AL-AL,03-AL junctions showed no measurable change
of junction capacitance as function of applied bias voltage.
Bond, et al., concluded that the dielectric constant of AL,03 is
not a function of voltage and will conduct UHF signals in a
linear manner. An oxide layer is a common insulator for the many
rusty bolt path nonlinearities onboard Air Force airplanes.
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Figure 4-1 Back~-to-Back Diode Pair with an Antenna System
which Represent a Symmetrical Nonlinearity

Yig ®= tv szt,.v"

Figure 4-2 Simplified Circuit Model for the MIM Junction




There is evidence that typical MIM junctions have almost
symmetrical i-v transfer characteristics. 1In other words elec-
trical conduction is about equal in either direction. This
implies that when a power series approximation is used, the sym-
metrical characteristics will contain only odd-order terms.

4.1.1 Volterra Transfer Functions of the Rusty Bolt

A Norton equivalent circuit for the MIM junction is shown
in Figure 4-3. The antenna impedance Z, and the junction resis-
tance r4y have been combined into an equivalent impedance Zg. The
driving current source i,(t) is the convolution of the antenna
driving voltage v,(t) and the equivalent admittance (inverse of

the impedance 2Z,). The nonlinear exponential current-voltage

characteristic of the MIM junction discussed in Appendix B can be
expanded into a power series

where the series coefficients k, are a function of the dielectric
material, work function of the metal, the electron charge and
mass, Planck's constant, dielectric thickness and junction
geometry. The current through the nonlinear resistor, iy, can be
interpreted as a set of voltage controlled current sources
connected in parallel across the junction capacitor.

4.1.2 Linear Response and Transfer Functions

We will now obtain the linear impulse response of the equi-
valent circuit for the MIM junction by considering ig(t) as an
input current source and v(t) as the output. Ultimately, we will
be interested in the linear and nonlinear transfer functions
between the input and output voltages.
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Figure 4-3 Norton Equivalent Circuit for the MIM Junction

4-4 Cifcuit Used in Determining the Linear Voltage
v, (t)
1




In general, the voltage response v(t) can be expressed as

vit) = 1§ vk(t)
k=1

where v, (t) denotes the k'th order portion of the response. To
determine the linear porticn of the response, the nonlinear vol-
tage controlled current sources can be ignored.
be analyzed is shown in Figure 4-4,

The circuit to

The linear voltage, vy (t) is given by

v, (t) =_Z h, () i (t-t)ar .
The Laplace transform of v)(t) is equal to

Vils) = H,(s) I,(8) .
The transfer function H;(s) can be obtained from the node equa-
tion

vl(s) Vl(s)
ze(s) + ZC(§7 + klvl(s) = Ia(S) ’
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which yields

V,(s) Z_(s)Z.(s)
H)(s) = TIF) =T )+'z'e( )+§Jz YZ.(s) °
a's e 8 C S 1 e(s zC s

The voltage to voltage transfer function is then given by

Vi(s) H,(s) Z2o(s)
v a's e'S e SITiciSITR L8088

4.1.3 Higher Order Output Voltage to Input Current Transfer

Functions

The nonlinear output voltage to input current transfer
functions of the circuit shown in Figure 4-3 are given below.
These NLTFs and the corresponding higher order responses are
derived in Appendix C. All the Volterra functions discussed in
this section and derived in Appendix C can be manipulated to an
equivalent symmetrical form.

Second Order Transfer Function

Hz(sl,sz) = - kzﬂl(sl+s2)H1(s1)H(sz)

Third Order Transfer Function

PN |
G |

Hy(8yr8,085) = Hy(8,)H (8,)H,(8,)H, (5,45, +5,)[ 2k3H,(8,+85) k4]
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Fourth Order Transfer Function

h4(51'32'33's4) = H)(sy+sy+s3+s, ) {-k H,(s).8,)H,(s;,8,)

. _ ’ ’ 4
= 2k,H,; (s )Hy(s,,84,8,) - k3Hy (51 )H; (s,)H,(55,8,)k, f.?(si)}

(4.11)

Fifth Order Transfer Function

H5(51’52'53's4'ss) = Hl(sl+sz+s3+s4+s5){—2k232(sl,sz)H3(s3,s4,ss)
- 2k2H1(sl)H4(sz,s3,sé,ss)

- 3“3[“1(si)“2(52'53)“2(s4'55) + Hy(s))H) (sy)H3(s5,54.85)]

5
= 4k H, (s;)H, (s, )H, (85)H,(54,85) - kg iglul(si)} .

The above equations show that the output voltage to input current
nonlinear Volterra transfer functions for the 1lumped parameter
"rusty bolt" circuit depend only on the nonlinear coefficients
(constant k's) and the linear transfer function H;(s). From this
we see that the linear transfer function plays a crucial role in
the identification of the nonlinear transfer function.




4.1.4 Output Voltage to Input Voltage Transfer Functions

In the previous subsection, we discussed Volterra transfer
functions by considering the input to the “rusty bolt' lumped
parameter circuit to be a current source and the output to be the
voltage generated across the parallel combination of the capaci-
tor and the nonlinear resistor. In this subsection we give non-
linear Volterra transfer functions for the "rusty bolt" lumped
parameter circuit, when the input is the antenna voltage source
and the output is the voltage generated across the parallel com-
bination of the capacitor and the nonlinear resistor. We refer
to these functions as the voltage to voltage Volterra transfer
functions.

The 1linear (first order) voltage to voltage transfer
function for the lumped parameter circuit was given in Section
4.1.2 (Equation (4.8)). The derivation of the higher orders
voltage to voltage transfer functions is presented in Appendix C.
The resulting second and third order voltage to voltage Volterra
transfer functions are given below.

Second Order Transfer Function

Hya(s1r8,) = ~koH,y (s, )Hy, (8,)H,, (sy+8,)2, (s, +s,)

Third Order Transfer Function

Hyy(syrsgis3 ) = [-2k,H,,(s5083)-k3H,) (8;,)H,, (53)]

Hvl(sl)Hvl(sl+sz+s3)ze(sl+sz+s3)
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' where 2Z,(s) is the sum of the antenna impedance and the MIM
¥; junction resistance. As we can see from Equations (4.13) and 2
L e
R (4.14), the voltage to voltage Volterra transfer functions take Ay
§ the same form as the expressions for the voltage to current "
A transfer functions. The only difference is the impedance factor B
4 which multiplies all the terms and is evaluated at the sum fre- i
b quency.
o
8 The voltage to voltage Volterra transfer functions for the

lumped parameter circuit depend only on the nonlinear coeffi- =
%? cients, the linear transfer function and the equivalent antenna
é} impedance.
Y
L. 4,2 POWER CONSTRAINT ON THE “RUSTY BOLT" LINEAR RESPONSE L
> MEASUREMENT
2
I In the previous section on "Rusty Bolt" modeling, it was

shown that the nonlinear Volterra transfer function of the simple
circuit depends only on the linear transfer function and the co-
efficients of the nonlinear i-v MIM characteristic and in the
case of the voltage to voltage nonlinear transfer function also

ko

e

AN
%} on the circuit antenna impedance. Therefore, knowledge of the
. linear transfer function plays a crucial role in the identifica- ;!
4% tion of the nonlinear transfer functions. In this section, we :
ﬁq discuss the practical 1limitations in measuring the linear }‘
oy response. 5
f n
15 4.2.1 "Rusty Bolt"™ Linear Response Measurement o
,24 The measurement of the rusty bolt 1linear response is
% modeled in the system shown in Figure 4-5., We assume that the N
7 measurement is performed onboard an aircraft and that only a §%
; single transmitter will be active. We have modelled the MIM "*
2& junctions which are distributed throughout the aircraft as a S?
. lumped system which we call the rusty bolt. The rusty bolt is 8
irradiated by the transmitter and reradiates energy which is :S
3
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received by a receiver that is tuned, for the purpose of this
measurement, to the transmitter frequency. In addition to the
rusty bolt, there will be a contribution due to free space trans-
mission (which we will call the direct path) and a contribution
due to backscatter from the skin of the aircraft. We have also
lumped the scatterers' contributions together. We assume that no
interference other than additive noise falls in the receiver
band.

The received signal r(t) is given by

r(t) = jicix(t-Ti) + Bx(t-tD) + uy(t-rR) + a(t) (4.15)
where
x(t) 4 transmitted signal
y(t) 2 rusty bolt linear output signal
T3 4 propagation delay of scattered path
TR 2 propagation delay of rusty bolt path
15 2 propagation delay of direct path
ci 2 attenruation of scattered path
B 2 attenuation of the direct free space path
a 2 rusty bolt signal attenuation
n(t) 4 white Gaussian noise.
4-13
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The lumped rusty bolt output signal is given by

y(t) = [ hy(1) x(t-t)dv

where hl(T) is the rusty bolt impulse response.

Thus if we could extract y(t) from the received signal, we
would be able to identify the rusty bolt linear transfer func-
tion.

As shown in Equation (4.15) the received time domain sigral
is made up of the input which is known, the rusty bolt output,
which is due to the rusty bolt poles and the input, and the
noise. This situation is therefore similar to the case where the
unknown system contains a direct path between the input and the
output. In such a case the unknown system poles can be identi-
fied using a linear system identification technique such as the
pencil-of-functions method. While it is theoretically possible

to extract the "rusty bolt”"” linear response, as shown in the next

section, practical power constraints will introduce severe

errors.

4,2.2 Received Power Levels

In the previous discussion we established that at least
three signal paths combine at the receiver. We are interested in
an estimate of the strength of the rusty bolt, the direct free
space and the aircraft skin-reflected signals. A number of
parameters such as transmitted power, transmitter and receiver
antenna characteristics and the aircraft skin radar cross-section
are required for the power calculation. In addition, and most
important, one has to know the antenna characteristics of the
rusty bolts. The determination of the rusty bolt antenna char-
acteristics is a very difficult problem and no rigorous solutions
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have been obtained to date. However, useful information can be
obtained by treating the rusty bolt as an isotropic radiator and
performing computations in the far field.

In interference analysis, the antenna gain of concern ex-
tends well beyond the main beam 1limits. Signals may couple
through side lobes and back lobes. When detailed information on
specific antennas is lacking, which is our case, one can use a
coarse representation of an antenna pattern which involves twe
gain levels, one for the main beam and the other one for the re-
maining side lobe. In the analysis, we will assume that the main
beam gain for both transmitter and receiver antennas is 0 dB and
that the sidelobe gain is ~13 dB relative to isotropic.

Another question that needs to be addressed deals with how
the signals couple from the transmitter to the receiver for the
three paths. The strongest rusty bolt signal occurs when it is
irradiated by the transmitter main beam and its reradiated energy
is received via the receiver main beam. This condition is
referred to as main beam to main beam coupling and has a low
probability of occurence because it is highly 1likely that the
rusty bolts are distributed over the large surface areas of the
aircraft and only a small percentage would fall in the main
antenna beam at any time. In order to improve the rusty bolt
received signal with respect to the free space direct path sig-
nal, we can point the transmitter main beam away from the
receiver main beam. In the analysis that follows, we will con-
sider two situations.

The radar equation can be used to estimate the received
power of the three linear signal paths. The direct free space
path received power Pp is given by

P G G
- _T°TD°RD ,

(4.17)
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transmitted power in watts

transmitter antenna gain for the direct path
receiver antenna gain for the direct path
distance between transmitter and receiver in m

effective receiver antenna aperture in m2.

The received aircraft skin scattered power P; is given by

PrGrg . GrsPe
3 2
4 nd RS

where Pp and A, are the previously defined transmitter power and
received antenna aperture and

transmitter antenna gain for the scatterers

!

o~

receiver antenna gain for the scatterers

Rk

distance from transmitter to center of the
lumped scatterers, m

AU ™ 2

distance from lumped scatterers to receiver, m

Lo

radar cross section of the scatterers
(aircraft skin), mz.
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The received power Ppp due to the reradiation of the lumped rusty
bolt is given by

RR

Where Py is the total transmitted power and

transmitter antenna gain for the rusty bolt
receiver antenna gain for the rusty bolt

area of a single rusty bolt which captures

and reradiates the signal energy, m?

total number of rusty bolts

effective receiver antenna aperture, m2

distance between transmitter and lumped
rusty bolt, m

distance between receiver and lumped rusty
bolt, m,

We next consider two measurements, namely antenna sidelobe
to sidelobe rusty bolt coupling and main lobe to main lobe rusty
bolt coupling. The analysis will be performed with the following
assumed parameter values,
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" Gpp (main beam gain) = 0 dB above isotropic 5
;ﬁ Ggy (side lobe gain) = -13 dB above isotropic
f? d (distance between transmitter and receiver) = 50 ft =
o 15.2 m
. . -4
q dpg (distance between transmitter and scatterers) = 1/2 d
,r..
g: drr (distance between transmitter and rusty bolt) = 1/4 d
Eﬁ Ap (rusty bolt area) =1 mm2 = 1076 n?
& N {number of rusty bolts) = 10,000 =
il
& o (skin radar cross section) = 1 mZ.
3
v , %
o Sidelobe to sidelobe rusty bolt coupling is shown in Figure 4-6.
Eﬁ This situation has the highest probability of occurence. The
1
3 received power ratio between the free space path and the rusty
’ bolt signal for the case shown in Figure 4-6 is given by &
ﬁ’;
b
i P Grry G an a2 a2 2
g D _ ( TD RD) TR "RR _ Gmb 9sd (4.20)
by " 2 G. G,, NA G., NA_ 64 ° *
A PRB d TR RR R S R -
§§ The ratio in dB is equal to :
[
M
[ &
R 10 log 9 + 10 log nd? - (-13 dB) - 18.06 dB - 10 log N,,
Fo i
G = 9,54 + 16.79 - 5,06 + 20 = 41.27 dB. i
e v
,\"; B
i |
ol
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Similarly, the received power ratio between the skin scatterers
and the rusty bolt for the first case is given by

9

NAR 6

The scatter to rusty bolt power ratio in dB for the given param-
eters is then equal to

2

10 1og 10° + 10 1log 9 - 10 log 64 = 29,54 - 18.06 = 11.48 dB.

The second case is for main beam to main beam rusty bolt
coupling as shown in Figure 4-7. As previously mentioned this
case has a very low probability of occurrence. The free space
path to rusty bolt received power ratio for this case is equal to

20 log G, + 10 log 97d® - 10 log 64 NA_ =

= =26 + 26.33 + 1.94 = 2.27 dB.

The received scattered to rusty bolt power ratio for the second
case is equal to -13 + 11.48 = -1,.52 dB.

It was pointed out in Section 4.2.1 that a linear identifi-
cation technigue such as the pencil of functions method could be
used to extract the rusty bolt poles. However, as shown in this

4-20
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section, the free space direct path signal in most cases will be
some 40 dB stronger than the rusty bolt signal. 1Identification ﬁg‘
' of the rusty bolt system poles based on such a relatively weak 7fi
rusty bolt output signal would not be feasible in practice. o

The above analysis showed that even in the absence of

noise, it will be extremely difficult to extract the linear rusty ﬁf

bolt response because it will not be the strongest signal com- ;f

¢ ponent. Furthermore it is highly likely that the propagation f
delay of all three paths will be very close to each other which [

; makes it impossible to separate the signal components. In view

; of this, it is proposed to measure the nonlinear rusty bolt re-

5 sponse directly. The most efficient measurement technique for

L
.
¥

L the rusty bolt will be to measure the third harmonic or third-
order intermodulation product. This should provide the strongest
signal because the rusty bolt model has an almost symmetrical
nonlinear i-v characteristic. Note that intermodulation product

T

measurements avoid the problem of spectral impurities (harmonics)
caused by some local oscillators.
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SECTION 5
RUSTY BOLT NLTF IDENTIFICATION

It was shown in Section 4 that for the lumped parameter
rusty bolt circuit the higher order transfer function poles
depend only on the linear transfer function poles. This is
always true for the case where the nonlinear system is a lumped
parameter circuit with zero-memory nonlinearities between circuit
nodes. Under normal conditions, linear identification can be
used to identify the linear system poles and from this the non-
linear system poles can be determined. However, this procedure
cannot be applied to the rusty bolt. The problem is the fact
that estimation of the linear transfer function is complicated by
the presence of the highly dominant direct path transmission
signal as described in Section 4.2. Therefore, the "Rusty Bolt"
can only be identified from direct measurements on the nonlinear
response,

5.1 RUSTY BOLT IDENTIFICATION TECHNIQUES

In a general sense, identification procedures can be based
on either the transient response or the sinusoidal steady state
response of the system. 1In the next subsections we will discuss
rusty bolt identification based on both the transient and sinu-
soidal steady state response. It is concluded that identifica-
tion based on the sinusoidal steady state response is better
suited for the rusty bolt problem.
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5.1.1 Transient Probe Waveform Analysis for the Rusty Bolt

-
e, o P

Suppose that the rusty bolt is excited by an input x(t).
Assuming a third-order rusty bolt model, the received signal is
given by

y(t) = _£ hy(u) x(t-u)du + {{f hy (ujeuyeuy) x(t-u,)

x(t-u,) x(t-uj) du; du, dug + d(t) + n(t)  (5.1)

where d(t) denotes the signal due to the direct transmission of
x(t), n(t) denotes additive noise, and hl(u), h3(u1, ug, u3) are,
respectively the first and third-order impulse responses of the
rusty bolt.

As pointed out in Section 4.2, the identification of the
linear response of the rusty bolt is not practicable because the
received signal will be primarily due to the free space transmis-
sion and the aircraft skin scattered signal and not due to the
output of the rusty bolt's linear transfer function. Consequent-
ly, direct identification, using transient analysis of the rusty
bolt third-order transfer function, was considered.

For simplicity suppose that the linear transfer function
has only one pole and is given by

RN
\.\‘:‘;3 "‘ .. & A N ) g’lt n'i w%%‘&%h@;\ “5?: ':‘: ‘s Py '*;,_n»”g \i



AT RN TR ke NN PR N NI
RO IO A IR DR S - A By

Then, the rusty bolt third-order transfer function, assuming a
symmetrical nonlinearity and a third order coefficient of unity,
is equal to

H3(sl,sz.s3) = - H,(s))H,(8,)H(s;)H,(5,+5,+5,)

. -1 1 1 1
81+p 82+p 83+p Sl+82+83+p

In an attempt to provide separation between the 1linear,
direct path and third-order responses, we let the input be a
pulsed carrier

x(t) = 2e°t cos wct u(t)

where a determines the rise time of the pulse and u(t) is the
unit step. Using the association of variables it can be shown
that the third-order response in the Laplace transform domain has
poles at:

-3p
-2p + a % jwc
-p + 2a % j2mc
3a % j3wc
3a 2 jwc

-p+2u.
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The direct path componenis have poles at a % jmc. Thus, although
the system pole is for one term associated with frequency 20

the difference between 2w, and the frequency of the direct path
component w., is insufficient to separate the third-order com-
ponent from the direct path component. Because of the high power
level of the direct path component such a separation is necessary
in order to use a transient response based technique such as the
pencil-of-functions to identify the system pole of the third-
order response. Therefore, the most promising identification
technique consists of the iden*ific .tion of the third-order
transfer function based on sinusoidal steady state measurements.
In this approach, the third-order response can be separated from
the direct path component.

It should, however, be noted that in applications where the
direct path component is absent, the use of a pulsed carrier may
facilitate the separation of the linear and third-order responses
thereby permitting the identification of the residues of the
third-order transfer function.

5.1.2 Sinusoidal Steady State Analysis for the Rusty Bolt

Sinusoidal steady state probing can be used to measure a
system frequency response. The measurement allows the separation
of some of the different order responses. For example, contribu-
tions of different orders of nonlinearities can be separated by
measuring certain harmonic or intermodulation responses. 1In the
discussions that follow, we will discuss sinusoidal steady state
techniques to estimate the poles and zeros of the rusty bolt. We
will then present a method which uses the estimated rusty bolt
poles and zeros to identify the constants that are necessary to
predict the NLTF specification parameters such as harmonic and
intermodulation distortion,
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5.1.2.1 Third-Order Transfer Function Identification Using "
q Sinusoidal Steady-State Measurements 7]
% Suppose that the linear and third-order transfer function ii
i of the rusty bolt are, respectively, given by v
b4
\J‘ _[.‘ N
¥
? K (-2— + 1) ;
i Hl(s) = (s )(S ] (5.5) e
v = +1])(= +1 =
«‘ by "7y -
s
{
: H3(sl,sz.s3) = Hl(sl)Hl(sz]ﬂl(s3)H1(sl+sz+s3). g
} Assume, for simplicity that the output due to input a(t) is equal :F%
5 to the sum of the first and third-order responses. “‘
o :

_ y(t) = [ h,(u)a(t-u)du + [f] h3(u1,u2.u3)u(t-u1)u(t—uz)u(t-u3) iﬁ
o 1 S
; du, du, duy . (5.6) {;
5 Then, if the input is
2
8 = e
3 a(t) = A; cos wt + A, cos w,t (5.7) B
| G
? : t
b the steady-state output contains the terms listed in Tables 3-1 %i

and 3-2 of Section 3. We select the third order intermodulation S
N component for further analysis. The output components at fre- f%
v quencies 2f, + f, and -(2f; + f;) have, respectively, amplitudes e
o
. et
o
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Note that this is the only component of the output at this fre- - 3

quency. v
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In the above, e
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If the poles -bj, -b, are real, the amplitude frequency response
should permit the estimation of a, by, by and K.

The identification procedure may be repeated for different
values of f, to improve the estimates. Note that if the poles
are not real the procedure will estimate |b;| and |by|. If the
higher order responses are significant they will also contribute
to the output at frequency z(2f; + f,) thus complicating the pro-
cedure. Similarly, if £, is fixed and f, is swept, the frequency
response will exhibit breaks at

{(double breaks)

The poles and zeros identification just described can also be
carried out using numerical curve fitting technigues ([Shanmugan
and Jong (1975)]. We assume that we have a minimum phase trans-
fer function. The basic procedure is as follows. We are given
the amplitude |H(f)| of a minimum phase transfer function H(f),
at P values of f=f,, k-1,2,...,P. From this data we want to
determine H(f) in the form

(cyft)/(1 + Z at") ,

i=0 n=1
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such that the error between function |H(f)| and the P measured

values of |H(f)| is minimized. 1If the least square error cri-

terion is used in the above equation to find the coefficients c's
and d's, a set of nonlinear equation results. Different algo-
rithms have been proposed to solve the set of nonlinear equations
but most of the methods require both amplitude and phase measure-
ments. Convergence can be a problem when the available data
spans a few decades in frequency. Shanmugan and Jong have
proposed a method which avoids these problems. The method uses
the magnitude squared function and the minimum phase transfer
function assumption. The method is described in detail in
[Shanmugan and Jong (1975)}.

5.1.2.2 Sinusoidal Steady State Identification Including
The Effects of the Fifth Order NLTF.

Third-order transfer function poles and zeros identifica-
tion using a sinusoidal steady-state procedure was discussed in
the previous subsection. In this Section we give results for the
procedure in the absence of noise., We also consider the effects
of the fifth order Volterra NLTF on the identification of the
third order transfer function. The case where the measurements
contain a noise component is examined in Section 5.2.

Assume that we have a symmetrical nonlinearity (only odd
order nonlinear coefficients are important) and consider a
response up to fifth order. Note that there is much evidence in
the literature that MIM junctions have almost symmetrical i-v
characteristics. A system model with up to a fifth order non-
linearity is shown in Figure 5-1. 1If the input x(t) is the sum
of four complex exponentials

M=4 j2rnf_¢t
x(t) = I a e "
m=1

N
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then, as described in Section 3.1 the output y(t) is given by

1 jZIfzt
5 E Bn (E) Hn e

where B, depends on the input signal amplitudes A, and is in-
dependent of frequency. The frequency dependence is entirely
given by the n'th order nonlinear transfer function H,.

5.1.2.2.1 Two-Tone Input Example

Multitone testing can be used to characterize nonlinear
distortion. The most important case is two-tone testing. In
this section we will give the nonlinear response when the system
is excited by two sinusoids. In Eq. (5.21) we let A3 = Ay*, Ay =
A,*, f3 = -f; and f4 = -f;. We are interested in the intermodu-
lation product (nonlinear response) occurring at frequency f; =
2f, - f,. Using Eq. 5.22, we have

=32, * - 5,2 -
=7 A%, H3(f1,f1 fz) +7A°A 1’ f2)

18,12 g (£, /€, £, -t
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The third and fifth order nonlinear transfer functions, assuming
only third and fifth order nonlinear coefficients ki and kg, are
given by

H3(sl.sz,s3) = -k3 Hl(sl)Hl(32)51(33)H1(sl+sz+s3)

H5(51'52'53's4'85) = {%% k3 Hy(s )H(8,)H,(84,8,,5,)

5
- kg ifl Hl(si)} H) (8, +8,48,+5,+s.) (5.25)

where the overbar is a compact symmetrization notation, cor-
responding to taking all permutations of the arguments.

Let the linear transfer function be given by

~ 1000
H)(8) = 15510V (s¥1007 °

This corresponds to linear system poles at frequencies 1.6 and 16
Hz. We select the amplitudes of the input A, and A, to be real.
The magnitude of the third order response at frequency 2fy, - £,

is then equal to

3, 2
T A Ay |By(f £ .-1,)]
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We now hold f; constant and sweep with respect to f;. The magni- -
" tude of the third order transfer function is then given by g;
E (2
iy
- |H3(fllflr‘f2)' 3
G B
g‘ rrr;"
¢ K e
g = T;321f2+10| |-32:f2+100| |321(2f1-f2)+10| |j21(2£1—f2]+105| i
=
: (5.28)
% where K is a constant and the Bode amplitude plot of the third
’ order frequency response will exhibit breaking frequencies in Hz . ]
i at -
ﬁ :. ’ .
?, “
p £, = 1.6, 16 (5.29)
L]
h and AR
.( B
Ly
N f, = 2f, + 1.6, 2f; + 16. | (5.30)
=
J Thus if f, is small, the third order frequency response will ex-
! hibit double breaks at 1.6 and 16 Hz.
K For the identification procedure, one can choose to fix
( either f; or f,. The frequency that is fixed must be much .
3 smaller than the breaking frequencies of the linear transfer Ao
3 function and therefore one chooses it to be as small as possible. "
& e
In practice the frequency resolution imposes a constraint as to
r how small the fixed frequency can be. For the results to be pre- (5
‘: sented, we choose f; equal to 0.05 Hz. w
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{; The magnitude of the intermodulation (IM) response at 2f; - f%
' f, for a third order Volterra model (only the first term in Eq. -
oY) (5.23) is considered) is shown in Figure 5-2, Here we select hﬁ
§§ unit signal amplitudes (A, = A, = 1). From the Bode plot shown $i
h in Figure 5-2 we see that the third order magnitude response ?z
falls off at a rate of -80 dB/decade at high f, frequency values. g7

& A single pole contributes -20 dB per decade. We can thus con- @%
f clude that there are 4 poles in the system. By fitting the model hal
g; to the IM amplitude Bode plot shown in Figure 5-2 we can graphi- ;%
N cally obtain the result that there exists a double pole around :

AN 1.5 Hz and a double pole around 16 Hz. From this result and the g;
Y, model we can identify the poles of the linear transfer function ,§
f} with good accuracy. %}
Next we consider the effects of the fifth order nonlinear be

3 transfer function (NLTF) on the identification of the poles via éﬁ

[E the third order intermodulation response. Figure 5-3 shows the i?
ﬁ magnitude (Bode plot) of the IM response at 2f; - f, including %i
. all the terms in Eq. (5.23). The fifth order nonlinear coeffi- 3;
3 cient kg is 20 dB below the third order coefficient. Frequency %g
£ plots of the IM magnitude versus f, are shown for different .::
j: choices of input signal amplitudes. The frequency plot for unit %;

input signal amplitudes shown in Figure 5-3 closely agrees with

i e
i
e
L2
e

the one shown in Figure 5-2, For this case, the fifth order con-

,.
e s
=~ N

PR *A

oo
i e

tribution is small and there is no problem in carrying out the

i ﬁ'w,

identification. As the input signal amplitudes are increased,

ﬁ’ the fifth order contribution becomes more significant at low fre- fe
54 quencies and the relative phase between the terms in Equation gﬁ
(5.23) may become important. The fifth order contribution has a %}

smaller impact at the higher f, frequencies; as we can see from *ﬁ

f Figure 5-3, the slope is only slightly changed from the -80 dB LA
2 per decade roll-off. The reason is that for frequencies outside E%
}é the linear transfer function passband, the fifth order transfer }
2 function is attenuated much more than the third order transfer »
~ function because it has more poles. .
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Another case showing the effects of the fifth order NLTF
contribution to the IM response at 2f; - f, is shown in Figure
5-4. Here the third order nonlinear coefficient k3 is 10 dB
stronger than the fifth order coefficient kg, Frequency f; is
again fixed at 0.05 Hz and we sweep f,. The three terms in Eq.
3.0 are all in phase for the range of frequencies of f, shown in
Figure 5-4, As we increase the input signal amplitudes, the mag-
nitude of the IM response also increases and the slopes exhibit a
larger change compared to the results shown in Figure 5-3. This
is consistent with the fact that the fifth order contribution in
Figure 5-4 has been increased by 10 dB compared to the case shown
in Figure 5-3, However the third order transfer function still
dominates for frequencies outside the passband.

5.1.2.3 Sinusoidal Steady State Poles and Zero Identification

Using Phase Information

The method discussed in Section 5.1.2.1 uses magnitude mea-
surements to estimate the poles and zeros of the rusty bolt
linear transfer function. Another sinusoidal steady state method
which uses phase measurement was developed by V.K, Jain. This
alternate method is discussed in detail in Appendix A. Basical-
ly, sinusoidal steady state phase measurements are performed at
the third harmonic frequency. These measurements are used to
solve a set of nonlinear equations which yield the estimated

poles and zeros.

5.1.2.4 Identification of Rusty Bolt NLTF Specification

Parameters Constants

The sinusoidal steady state identification technique just
discussed can be used to estimate the poles and zeros of a
selected nonlinear response and from this one can determine the
poles and zeros of the linear transfer function. In the case of
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voltage to voltage measurements, one can also determine the nor-
malized antenna impedance of the lumped parameter circuit. The
objective is to use the lumped parameter "rusty bolt" circuit
model to predict nonlinear effects, which requires the determina-
tion of the gains of the Volterra transfer functions in addition
to its poles and zeros. In the following section we discuss an
approach to and the difficulties in determining the gains of the
transfer functions. We assume a fifth order rusty bolt model.

5.1.2.4.1 Nonlinear Response Measurements

Harmonic and intermodulation measurements can be used to
determine the parameters of the "rusty bolt" 1lumped parameter
circuit necessary to specify the EMC performance. The third and
fifth harmonic responses y3¢(t) and yge(t) due to the input

A sin(2nft)
are given by

3
A .
Yag(t) = -|H(E,£,6) |sin(2n(3E)t+¢y)

5
st(t) = ?— |H5(f,f,f,f,f)| sin (2“(5f)t+¢5)
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where H; and Hg are the third and fifth order Volterra transfer Y
functions. Similarly the intérmodulation response at frequency
e - - {
31 2f,-f, due to the input x(t) A, sin 2»f,t + A, sin 2%f,t is ';
DY given by "
'..n .’
,.') z
e y (6) = |3 A A H, (£, ,6,-£,) + 2 A AA H (£, ,€,, €, € ,£,) + 4
b5 2f, -f, 4 71 T273'"1'1 T2 4 71 27511t 2 ;
e 15 . 2, 3 _ _
‘§$ g A A H (£ f,,E-f,-£, )| sin (27(2f,-£,)t+4) (5.34)

where we have assumed that the input amplitudes A, and A, are

:: real.
e
X “ In the discussion that follows, we present expressions ;
za.‘ using voltage-to-voltage transfer functions. To get the voltage )
) to current expression one sets the antenna impedance (aZ,,) in

E} the expressions to unity.

"3

3 Let the linear transfer function be given by

N

) . :
L

oY K(Z -1)

e Hy(s) = a .= KG, (s) (5.35) '

(5= - 1)(

v, bl b2 ,
223 %
SCh where s is the Laplace variable. ‘
S .
::\ » The equivalent antenna impedance is given by ;
5 -
4 * »

At _ (8 - ¢
o zg(s) = a(;— -1) aZgy () (5.36) ;

; - 0
o )

&

- e

where o is the normalized equivalent antenna impedance constant.
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We can estimate Gj(s) and Zg,(s) using the sinusoidal =
5 steady state technique. The magnitudes of the third order and i
; fifth order Volterra transfer functions take the following form ?
»J g
) ‘ w
3 |85] = | ak3K7||Dy | |2, (8, +s,+s5)] (5.37) i
Py
N [
5 6 2 a
e 7
|#g| = |ak® ID,| |3k aky® Dy = kg| |2, (s +s,+sy+s,+s.)|  (5.38) z
N
X
% .
where the D;s are complex constants that depend on the linear
v transfer function term G;, k3 and kg are the nonlinear coeffi- &
> cients, K is the gain constant of the linear transfer function “
;E: and a is the normalized antenna impedance constant.
5.1.2.4.2 Determination of Gain Constants From Harmonic B
kY, Measurements
[ 'S
MY '
N Suppose that Gj;(s) and Zg,(s) have been identified, then rt:"'
': the measurement of IF[y3f(t)]|. where F denotes the Fourier e
transform, would yield the identification of |ak3k4| = B. Mea- =
é; surement of the magnitude square of the Fourier transform of
é- Yge(t) gives
L 2,12 4.2 2 2 2
ol | ®k*“|c, (£) {|k3 K a®[C,(£) + kg + ak3 kg K C3 (£)] (5.39)
¢
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where L
t'
0 A 5 2 2
g c () = (37 [6, (D)7 [6 (580 ) “|2 (56) | (5.40) .:
[ 4
% c,(£) = 9]G,(36)|2|z__(3£)]> (5.41) 3
" 2 1 en *
) -y
e
' C;(f) = -6  Re[G,(3£)z_ (3f)} (5.42)
:(!
:‘g
‘t
4 are knowns (A is the input signal amplitude). &
3] Make fifth harmonic measurements with three fundamental
_'_ frequencies f,, f, and f3. Let M;, M; and M3 be the measured
Y values (magnitude square of the Fourier transform). We then have =
o the equations
s
4,14, 4 2,12, 2 6.2 , 2 ‘
2 |c 'C (f ) + 'u ' + 'al( Ia K kqy k5C3(fi) -
3 = ‘c‘l'(‘fl—) i=1,2,3 . (5.43)
k i
f u
B |
i These equations can be solved for |a4kl4k;4|,|a2k12kc2| and -
aH :
2 |aK5|2aKk32k5 by inverting a matrix whose elements are determined
5 by C,(f;) and C3(f;). It has already been established that the |
. third harmonic measurement yields |ak3K4| = B, We now have four N
j equations ,
B
: -
N X
b bl
T !"
5 o
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| ak4k 3] =B (5.44)
| adxl4k 4| = F, (5.45)
| a2k32k 2| = F, (5.46)

| ak®|2akk 32 kg = (5.47)

|
o]

w

.

To solve for K, we can use Equations (5.44) and (5.45) which
yield

w
N

K = . (5.48)

3|

It then follows that |a|, |K|, |k3| and |kg| can be obtained from
Equations (5.44) through (5.48). The unknown constants are
raised to several powers in the Equations to be solved. There-
fore, the accuracy of the solution is sensitive to errors. How-
ever, the goal is to predict specification parameters such as
harmonic and intermodulation distortion and for this we need the
combined constants |aK4k3|, |02K7K23|, and |0K6k5|. The first
combined constant is obtained from equation (5.44) while the
other two can be obtained by taking the square root of the right-
hand side of Eguations (5.45) and (5.46). The combined constants
should be less sensitive to measurement errors.
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5.2 SPECIFICATION PARAMETERS INVESTIGATION FOR THE RUSTY BOLT

The relationship between nonlinear transfer functions
(NLTF) and the EMC specification parameters was discussed in Sec-
tion 3. The sensitivity to LTF identification errors was
analyzed for the general problem. The goal was to evaluate the
effects of errors in pole locations on the quality of 1linear
identifications and on the predictions of nonlinear EMC specifi-
cation parameters such as intermodulation and harmonic distortion
assuming that the coefficients of the nonlinearity were known.

In this section, we present intermodulation and harmonic
distortion results for the rusty bolt problem. Third order
harmonic and intermodulation are predicted using estimates of the
voltage-to-voltage Volterra transfer functions of the lumped
parameter rusty bolt circuit. The estimates are based on a fifth
order Volterra model and the sinusoidal steady state identifica-
tion technique of Section 5.1.

o e )
' ? -+ 3
P A

. h 8.

o~
»

»
» an
r.¥

5.2.1 Intermodulation and Harmonic Distortion Prediction

Assuming a Third Order i-v Characteristic

Calculations using rusty bolt parameters found in the
literature ([Long and Schwartz (1974), Bond et al., (1979)] in-
dicate that the poles of the equivalent lumped parameter circuit
are real and that they are separated by a few orders of magnitude
in frequency. The parameters also indicate that the singularity
of the antenna impedance (zero at the sum frequencies in the

voltage-to-voltage NLTF) is about equal to the highest frequency
pole of the rusty bolt.
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Let the rusty bolt linear voltage-to-voltage transfer func- ¥
é‘é‘ tion and antenna impedance be given by i
X .
N ;
7 x
By
o H,(s) = 190 (5.49) i
' 1 (s+1) (s+100) *
pXS l
e Z(s) = (s+100) . (5.50) 2
é T*;.
LY ;
i
Y Note that it has been assumed in this case that the antenna
Y.
” impedance zero is exactly equal to the higher frequency pole of
"3
’-‘}?s Hy(s). We now will consider two different i-v characteristics
a . ‘
‘ for the rusty bolt (MIM junction), First, assume that the i-v k
,&: relationship for the circuit shown in Figure 4-2 is given by
i,= kv, + kv (5.51) H
- d 1¥d Vg - .
s -
Y-
;‘. In order to predict intermodulation and harmonic distortion, we
) need estimates of the linear transfer function poles, the normal- p-{
_ A ized antenna impedance and the combined constants C; = |cl(4k3| 5
é and C, = |02K7k32|. From equations (5.35), (5.36), (5.49), and
,f (5.50) we can see that the true values of the normalized linear :
[ transfer function gain and the normalized antenna impedance con- 2
.1 stant are, respectively, K=1 and a=100. For the examples to be
g 5
g presented, we select k3 = 0.05 mhos /v2 This gives combined &
j‘ constants Cy=5 and Cp=25. ’
3 A computer program was developed to implement the combined v
;Ez constants estimation technique described in Section 5.1.2.4. 1In ?&:
! . 4
; the program, the harmonic measurements are corrupted by additive Eﬁ;
é\’ white Gaussian noise. The combined constant identification algo-
- rithm gave correct estimates for the noiseless (SNR > 60 dB) case ;‘:."
Myl :‘
Vi
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(the correct normalized 1linear transfer function and antenna ‘
., impedance were used in the estimation). Next, we performed esti- Q{
33 mation in the _presence of a?ditive noise. Let the poles be ‘;
i identified as s, = -1.1} and‘s2 = -101.5 and the antenna impe- :g}
dance singularity as Sy * S, Using the identified poles, B
f: normalized impedance and a SNR = 30 dB, we estimated the combined S&
%: constants as C; = 4.257 and C, = 18.344, The true and estimated ;l
%‘ third order harmonic is shown in Figure 5-5. The predicted ?
result is labeled estimated Case I in Figure 5-5. As we can see, -4
;3 the predicted results are quite good. The error between the true
{ and estimated third harmonic ranges between 2 and 2.5 dB. Third
% order intermodulation results are shown in Figure 5-6. The pre-
{ dicted result is labeled as estimated Case I in the figure. The =
%5 intermodulation result is of the same quality as the predicted w
25 third order harmonic. In other words the errors range between 2

At and 2.5 dB.

In the next case, the poles and antenna impedance singular-
:% ity are identified as s, = -3.53, s, = -70, Sp = -70. Notice
4 that the low frequency pole is 250 percent in error, while the

3 higher frequency pole and the antenna impedance singularity are
" 30 percent in error. Using the identified 51ngu1ar1ties and a
-4 SNR of 10 dB, we identified the constants as C1 = 3,66 x 10° -2

ﬁg and C, = 4.60 x 1073,  The estimated constants depend on the

Cil * D
2 Lo MR -

o o
-

o

T g ey I d LR
il &

identified linear transfer function poles, the antenna impedance,
the SNR and the fundamental frequencies used in the harmonic mea-
surement (see Section 5.1.2.4.2). The same frequency (2Hz) was
used in all cases to identify the combined constants of the
voltage-to-voltage rusty bolt NLTF. This frequency is about mid-
way between the two pole location frequencies on a log scale.

RS RS

Ce

The true combined constants (using the correct poles and antenna
impedance) are C; = 5 and C; = 25. Thus there is a large differ-
ence between the estimated and true constants. This difference
is due to the large errors associated with the identified poles g
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and antenna impedance. Harmonic and intermodulation results for
2 this second case are shown in Figures 5-5 and 5-6. The predicted
N third order harmonic and intermodulation EMC specification param-
N

eters are reasonable for this case despite the large errors in
pole location, antenna impedance and the combined constants. The
I error in the prediction of the third harmonic for the frequency

range shown varies between 0 and 6.5 dB. The error in the pre-
" diction of the third order intermodulation ranges between 2.7 and
6 dB. The estimated constants appear to compensate for the
errors in pole locations and the antenna impedance.

: Next, we present a case where the system is severly mis-
oS identified. Let the linear system be identified as a single pole

-

at s = -26.6. The antenna impedance is identified as pure real
(2gnp = 1). Using the 1dent1f1ed pole and a SNR = 5 dB, the con-
4 anda ¢, = 2.38 x 1077,

The true and predicted third order harmonic and intermodulation

stants are estimated as C1 = 1.5 x 10

are shown in Figures 5-7 and 5-8,. The error in predicting the
third harmonic for this case ranges from 0 to 43 dB, while the
% errors in predicting third order intermodulation ranges from 15

W to 32 dB. Thus the errors are severe. This is to be expected
since the number of poles and the pole locations have been mis-
identified.

5.2.1.1 Caution in Using Severely Misidentified Poles to
Estimate Constants to Predict Nonlinear Performance

n* In the previcus subsection we showed third order harmonic
kl and intermodulation results for the case where the poles are
£y identified as p; = -3.53 and p; = -70. The predicted intermodu-

lation and harmonic results with the estimated constants gave
acceptable errors even though the identified poles and combined
constants were significantly different from the true ones.

The constants were identified using harmonic measurements
with a fundamental frequency of 2Hz (12.56 radians/sec). The
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fundamental frequency used in the harmonic measurements was
varied to investigate the sensitivity of the estimated constants
as a function of the frequency used in the measurements. The
obtained results are shown in Table 5-1. The results indicate
that the estimated constants are not too sensitive to the funda-
mental frequency used in the harmonic measurements unless the
error in pole locations is large. Predicted third harmonic and
intermodulation for the cases shown in Table 5-1 were reasonable
efcept for the case where the poles are estimated asagl--3.53,
§2=-70 and the constants are estimated as C1 = ,541,
C2 = ,376 with a fundamental measurement frequency of .2 Hz.
The error in predicting intermodulation for this case varied from
18 to 20 dB, while the error in predicting the third order
harmonic ranged from 16 to 23.6 dB. These results should be
compared with the results shown in Figures 5-5 and 5-6. There,
the largest error in predicting third order intermodulation and
harmonic distribution was about 6 dB.

The previously discussed example showed that when the
errors in the identified poles are large, the nonlinear transfer
function combined constants can be very sensitive to the fre-
quency used in the harmonic measurements. This can cause large
errors in the predicted third order harmonic and intermodulation
specification parameters.

5.2.2 Intermodulation and Harmonic Distortion Prediction

Assuming a Fifth Order i-v MIM Characateristic

In the previous Section 5.2.1, we presented harmonic and
intermodulation results assuming a third order MIM junction i-v
characteristic which is the case mostly discussed in the litera-
ture. We now extend the i-v characteristic. Assume that the i-v
relationship for the circuit shown in Figure 4-2 is given by

3 5

ig = kyvg + k3vy
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In addition to the singularities of the linear transfer function
and the normalized antenna impedance, the prediction of the third
order harmonic and intermodulation specification parameters for
this case requires estimates of the combined constants C, =
| k43|, €; = | a®k7k42| and c; = | okOkg].

In the example of Section 5.2.1, the combined constants
could be determined using harmonic measurements with the assump-
tion that kg = 0. Now because the MIM i-v characteristic con-
tains a fifth order term, both third and fifth harmonic measure-
ments with the assumption that kg is present are required to
estimate the combined constants. A procedure for estimating the
combined constants was outlined in Section 5.1.2.4.2. The system
of equations derived in that section to solve for the combined
constants becomes singular when the linear transfer function
contains a single pole and kg is present. The system also
becomes singular when the linear transfer function contains two
poles and the antenna impedance singularity is equal to one pole.
Thus, because of kg, the system of equations for the rusty bolt
case discussed in the previous example is singular. The problem
is that C3(f) is a multiple of C,(f) in Equations (5.39) through
(5.43). 1In practice the measurements will be corrupted by noise
and the system will be highly ill condition (close to singular).

We now discuss the previous rusty bolt case when the i-v
characteristic is expanded to include kg. The true linear trans-
fer function poles and antenna singularily s, are assumed to be
at s; = 1, sy = -100 and sy = s, = -100. The i-v nonlinear coef-
ficients are taken as k3 = .05 and kg = .0158, Thus k3 is about
10 dB stronger than Kkg. Theoretically, the combined constants
cannot be determined by the procedure of Section 5.1.2.4.2
because the system is singular. We can however determine C;, C,
which depend only on k3, and we ask the question, how well can we
predict the third order intermodulation and harmonic distortion
if we assume that only k3 is present and we identify the combined
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constants using the harmonic measurements, We performed the

4-\ identification assuming the same pole and normalized antenna '
fi impedance estimates as for the case discussed in Section 5.2.1. E-A_
2 The predicted third order intermodulation and harmonic distortion ‘.

estimates were very close to those predicted in Section 5.2.1. 'i

: It is not surprising that the third harmonic estimates agreed f"«
"g with the results obtained in Section 5.2.1 since the third har- 'g
3 monic is not a function of kg. This is not so for the third ::«
order intermodulation, The third order intermodulation is given E
.% by Equation (5.23). It contains three contributions, one from
33 the third order Volterra NLTF and two from the fifth order Vol- R
terra NLTF. For real and equal input signal amplitudes A, the
' third order NLTF term is weighted t‘>y A3 and the fifth order terms 3

are weighted by A5, For the examples presented, we used unit

:,3 input signal amplitudes. The fifth order NLTF depends on both ki B
’ and kg (See Equation (4.12)). The fact that the predicted third “

order intermodulation was close to that predicted in Section -1
M 5.2.1 indicates that the sum of the third order NLTF and fifth
2 order NLTF contributions due to k3 is much stronger than the x~
‘ fifth order NLTF function contribution due to kg. We increased u

the input signal amplitudes by a factor of 10 and the results

j still did not change significantly from these obtained in Section .&
3_ 5.2.1. For frequencies outside the linear transfer function *
;. (LTF) passband, the contribution due to the third order NLTF :
® dominates because the fifth order NLTF Hg contains more poles and .
’% thus Hg is much more attenuated. %
: Next, we attempted to predict the fifth order harmonic us- %3'
N ing the combined constants obtained from harmonic measurements %
with the assumption that kg = 0. We assumed that the poles and w
5,; the normalized antenna impedance of the previous example were ":ff
:’, known exactly. First, assume that k3 = 0.05 and kg = .005, Then %{
f:. the true combined constants are Cy; = 5, C, = 25, and C3 = 0.5. e:,

The estimated combined constants using harmonic measurements with -
a' i:i
X Ve, <
i

RS G
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the ?ssumption kg = 0 and a SNR = 60 dB are C1 = 5, C2 = 25.6

and C3 = 0, The computed true and estimated fifth harmonic for
this case indicated that the error between the true and predicted
harmonic increases as a function of the fundamental frequency.
The largest error for the frequency range 1 to 30 Hz was 11.6 dB.
Next, we changed the value of kg to 0.0158. The new true com-
bined constants are C; =5, Cy = 25 and C3 = 1.58, The estimated
combined constants using the harmonic measurements with the
assumption kg = 0 were él = 5, 62 = 31.5 and C3 = 0. The true
and predicted fifth harmonic is shown in Figure 5-9, Again the
error between the predicted and true fifth harmonic increases
with an increase in fundamental frequency. The maximum error for
the frequency range shown has increased to 19.5 dB. This is
understandable since the fifth order nonlinear i-v characteristic
coefficient was increased by 10 dB. These results show that for
a fifth order i-v characteristic, it is important to have an
estimate of the combined constant related to kg if fifth order
EMC specification parameters are to be accurately predicted.

5.2.2.1 Determination of Combined Constant Associated with k¢

It was just shown that when the MIM i-v characteristic con-
tains a fifth order coefficient kg it is important to have an
estimate of the combined constant associated with kg when pre-
dicting fifth order EMC specification performance. The highly
ill-conditioned system of equations was solved to get an idea of
the accuracy of the solution. The results are shown in Table 5-2
where they are compared with those obtained from harmonic mea-
surements with the assumption that kg = 0. When the poles and
the normalized antenna impedance are known exactly, the third and
fifth harmonic measurements at an SNR = 60 dB yield good re-
sult. Even though the system is ill-conditioned, the first and
third combined constants (C, and Cj3) are estimated correctly.
The estimate of the second combined constant is about 19 percent
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FIFTH ORDER HARMONIC IN dB
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Figure 5-9 Fifth Order Harmonic Using Volterra Voltage to Voltage

-
R

Transfer Functiong., Estimate based on true poles, true
antenna impedance and constants obtained from Harmonic

measurements with the assumption ks- 0.
5-38

T T T N AL YA St
R A R R

RS ST

)

&

pd

o




R S ' i . : -~ S . [ R ) : L t '_ sy e e - e .
I TR P e i S i RO e T LT 3 i SR R S b . 8 L 5 o«

(XN

T 9 PuR p ‘T pesn seIduINbalj IwuSNEPUN] OTUCMIRY Y3IJTd

J.

b

eq Z 30 Aousnbalj TRIUSNERDUN] ¥ YITA SPUE SIUIIINSTIW DTUOWIRY PITYL

BTN

g

" ta?

S
. . . quesexd s} 'y Huyemssy
-0t X o1 s6°s g-0t ¥ 99%¢ S3USNSINERVSN OFUOWIVH

€0t X LL°g z-01 X 99°¢ . -omSy Guyenssy
¥ SJUSWSINSVAN DTUCRINH

o
£

~0 nu Nu —U —u FIUTISUO)
sjveTIsy 03 pesn
(ap 01 = uNS) (4P 0f = uNS) (6P 09 = uNS SIusERINSROY

o edi

or- =% = % Ts ‘001- =% = %5 o= = ts

n

WhRT PR

s ‘esoc- = Ts s'101- = % = % f1r01- =

s19j9uWeieg pIIwwIISE

8s’iL = nu ‘ez = NU tg = b5 saumasuco ‘goL- = Os A3avinbuis wuuazwy ‘Q0i- = Tg - = }g gotod

SYdLANVIVYd INYUL

8510° = 5y  c0°0 = &y .oo?mk_t. - (8)'n

SIUNBINSEIW DTUOEAVY PITYI ATuo puv suolenbe jJO wWeysds UOTITPUOD TTT ATubty ¥ LUTSN BULISUOCD PajPWTIISd JO uostiedwa) -G STqEL




s PO - e i B - o .‘
L
" e
' -
J 5:;
: i»: <
! by
i L
i Wl
' in error. Prediction of the EMC specification parameters will |
yield good results. However, when the estimated poles and norma- vt
Z
lized impedance are in error, the second combined constant is LN
severly misidentified. If we compare the estimated second con- ﬁg?
stants for the cases SNR = 30 and SNR = 10 dB with those obtained -

5.

by performing harmonic measurements under the assumptions kg = 0 s
and kg is present we see that the estimates differ by a multi-

plicative factor of about 70 in one case and by about 1000 in the R
other case. ﬂﬂ

Third order EMC specification parameters where one of the %ﬁ%
frequencies 1is outside the passband of the linear rusty bolt E:g
transfer function depends mostly on the third order Volterra wi
transfer function. The fifth order NLTF plays a role only when ZEE

the amplitude of the input signal is very strong. Thus for fre-

quencies outside the passband only the combined constant C; is
important. In this case the error in the second combined coef-

ficient C, is not important and thus prediction of the third ﬁ
order EMC specification parameters using the estimated constants gﬁ?
shown in Table 5-2 will give acceptable results., In contrast, lli
the prediction of fifth order EMC specification parameters depend yﬁﬁ"
on both C, and Cj. In the previous sub-section, it was shown jﬁi
that predicting the fifth harmonic using constants estimated from o
harmonic measurements with the assumption kg = 0 gave large ¢ 
errors (max. 19.5 dB) even if the poles and the normalized impe- :
dance were correct. The reason is that the third combined

constant C5 cannot be estimated from harmonic measurements with

the assumption that kg = 0. Prediction of the fifth order EMC <
specification parameters when the poles are in error and the con- e

i1,

, stants are estimated from the ill condition system of equations o
[ ! %
f also yields very large errors. For a fundamental frequency in ; @g
the range of 1 to 30 Hz, the maximum error for the SNR = 30 dB a,ﬁ%

case was 37 dB at a fundamental frequency f; of 1 Hz and the A
minimum error in predicting the fifth harmonic was 17.5 dB at egy:

u!?,u W
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fo = 30 Hz., The error in predicting the fifth harmonic for the
SNR = 10 dB case was a minimum of 30 dB at f, = 30 Hz and a
maximum of 60 dB at 2 Hz. This is due to the inaccurate estimate
of C,. However, if we estimate C; and C, from harmonic
measurements with the assumption that kg = 0 and estimate C; from
the ill-conditioned system of equations, we get good results in
the prediction of up to fifth order EMC parameters. The maximum
error in predicting the fifth harmonic for the SNR = 30 dB case
was reduced from 37 dB to 1.7 dB. Similarly the maximum error in
predicting the fifth harmonic for the SNR = 10 dB case was
reduced from 60 dB to 10.3 dB, the maximum error in this case
occured at 30 Hz instead of 2 Hz.

5.3 CONCLUSION

We have presented intermodulation and harmonic distortion
results for the lumped parameter rusty bolt problem. A third
order and a fifth order metal-insulator-metal (MIM) i-v charac-
teristic was considered. For a third order i-v characteristic,
the EMC specification parameter up to fifth order can be pre-
dicted with good quality provided that the number of poles is
identified correctly and that the errors in the estimates of the
linear transfer function poles and the antenna impedance singu-
larity are reasonable (say less than 30 percent).

When the MIM i-v characteristic contains both a third order
and a fifth order coefficient the combined constants necessary to
predict the EMC specification parameters can be estimated from
the procedure described in Section 5.1.2.4. The combined
constants are obtained by inverting a matrix and by using third
and fifth harmonic measurements. The elements of the matrix are
obtained from estimates of the linear transfer function and an-
tenna impedance singularities. In general, the matrix is non-
singular except when the linear transfer function consists of a
single pole or when it has two poles and the antenna impedance
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singularity is equal to one of the poles. One of the most dif-
ficult cases, the case when the matrix is highly ill-conditioned,
was studied. The solution obtained by inverting the highly ill-

conditioned matrix gives reasonable estimates for the combined
constants C1=|aK4k3| and Cislaxsksl. However, the second com-

bined constant-cz=|azx7k32 is very inaccurate and unreliable.

Third order EMC specification parameters such as intermod-
ulation which have a contribution due to the fifth order Volterra
NLTF can be predicted with good quality using combined constants
obtained from harmonic measurements and assuming that kg=0. This
is especially true if the EMC specification parameters are to be
predicted at frequencies outside the passband of the linear
transfer function. The reason is that the contribution due to
the third order Volterra NLTF dominates because the fifth order
NLTF contains more poles and thus its magnitude response is much
more attenuated.

Prediction of fifth order EMC specification parameters when
the MIM i-v characteristic contains kg requires estimates of both
the combined constants C, and C3. 1In this case, the EMC param-
eters can be predicted with good quality if C, is estimated from
harmonic measurements with the assumption that kg=0 and C3 is
estimated by inverting the highly ill-conditioned matrix. Good
results are obtained provided that reasonable estimates are used
for the poles and the normalized antenna impedance.

5-42




Sacin| O

L]
1y
I(‘

‘l "ﬁ

ot

A

‘ib“I,:nu»

SECTION 6
MEASUREMENT AND INSTRUMENTATION CRITERIA

The traditional EMC specification parameters such as
harmonic distortion, gain compression, intermodulation and cross
modulation all depend on a common factor, namely the amplitude of
the signal or signals which interact with the nonlinearity. The
NLTF on the other hand are in most cases independent of the
signal amplitude. Therefore, once the NLTF are identified, the
traditional parameters for nonlinear elements are predictable for
any given signal amplitude. Techniques to predict the EMC speci-
fication parameters were discussed in the previous sections. The
“rusty bolt" equivalent circuit falls in the class of lumped
parameter circuits with zero-memory nonlinearities between
circuit nodes. For this class of systems, the relevant features
of the NLTF are the poles, zeros or residues of the LTF and the
combined constants of the NLTF. The combined constants are
always functions of the LTF gain and the coefficients of the non-
linearity. The experiment criteria must take the relevant
features of the NLTF into account. 1In addition, the experiment
criteria must relate to the following:

- System Dynamic Range

- System Bandwidth

- System Gain

- Signal(s) Amplitude

- Signal(s) Waveform

- Pertinent Output Characteristics

- Degree of Known Nonlinearity.
6-1
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6.1 TEST PROCEDURES AND REQUIREMENTS

“‘

4 . . .

X : MIM junctions (rusty bolt) in the coupling path(s) between
‘ co-located transmitters and receivers on board Air Force C31
B platforms cause very low level nonlinear interference. Even

though the interference is 1low 1level it still can degrade
; receiver performance, because the receivers are highly sensi-
Y3 tive. Receiver sensitivities can be about -170 dBm/Hz. Rusty

e bolt experiment criteria require special attention and care ‘!‘
. because of the low level rusty bolt signals and the large system F
) dynamic range. :i
,_ The proposed test procedure includes three steps. First, "
the i-v characteristics of a rusty bolt would be measured on a ‘!
::E‘ laboratory bench. Second, a rusty bolt would be identified in an «;
Vit anechoic chamber and the nonlinear performance would be pre- 5
3‘;' dicted. The model and the identification procedure would be KX
E refined as necessary. Finally, upon the successful identifica- F'
;d tion of the rusty bolt in step 2, the identification would be :
‘7 carried out on board an aircraft. It should be noted that even e
g:% if the results of step 2 indicate that a lumped parameter model - :
¢ is adequate to represent the rusty bolt in an anechoic chamber _
itl' the success of the experiment on board the aircraft is not
e guaranteed. The reason is that the aircraft rusty bolt will
ff‘: probably be of a distributed nature. This may necessitate the .;
4 development of a distributed paramter (transmission line) rusty i
. bolt nonlinear model. Furthermore, the characteristics may be ,S
k . %%

3 time varying. :§
2 ; - 2
g 6.1.1 Intermodulation and Harmonic Measurements ,;1
The parameters of the rusty bolt equivalent circuit are ;

best identified from sinusoidal steady state intermodulation and t"

harmonic measurements. These external nonlinear interference t

products must be separated from internal products generated in {

t;;
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| ' the transmitter if the principal features of the lumped parameter i
{' rusty bolt circuit are to be successfully identified. 1In addi- 2
_:J tion, the rusty bolt nonlinear response measurements must be :
§E§ performed with adequate signal~to-noise ratio (SNR). The total é
i': thermal noise power N in a bandwidth B in Hz is equal to ’
B ;%
?: N = kTB (6.1) }
‘2 J
i where k is Boltzman's constant and T is the noise temperature in «
@t‘ degrees Kelvin, The thermal noise floor at room temperature '
;gé (290°K) 1is equal to -174 dBm/Hz. This is close to the
e -170 dBm/Hz sensitivities of some Air Force receivers.
Q. AL-AL,03-AL MIM junction intermodulation levels of -110 to '
.&; -135 dBm for a transmitter power of about 1 Watt (30 dBm) have 3
32 been measured by Bond et al., (1979). Harmonic measurements have 3
? been performed by Flemming et al., (1977), and Watson (1980). v
o A block diagram for rusty bolt harmonic generation measure- f
y{g ment is shown in Figure 6-1. We recommend making third order and ;
%3£ fifth order rusty bolt harmonic measurements. The necessary com- ;
= bined constants to predict up to fifth order nonlinear EMC speci- ;
fication performance can be identified from these measurements.
Special filters are required to remove or substantially attenuate .
internally generated nonlinear products. Ideally, the residual .
harmonic level (without the rusty bolt present) should be reduced ;
below the receiver noise level., A block diagram for third order :
rusty bolt intermodulation measurement is shown in Figure 6-2. ?
Again special attention should be paid to the screening and ;
filtering of the equipment, the cabling and connectors. ;
Measurements of the properties and identification of the §
MIM junction (rusty bolt) parameters will be based on harmonic }
and intermodulation detection and measurements with the following ?
1
¢
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Figure 6-1 Harmonic Generation Measurement. ==
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Figure 6-2 Intermodulation Generation Measurement.
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conditions. Signal sources (transmitters) in a UHF range of 225

b to 400 MHz at power levels typically up to 50 Watts (47 dBm) will ,'-s.
: be used. The receiver should be tunable up to at least L-band (1 :.
h to 2 GHz) with sensitivities in the range of -110 to -140 dBm.
This corresponds to receiver bandwidths of 1 kHz to 1 MHz for ’
‘: receiver sensitivities of -170 dBm/Hz. Based on information vggt
about rusty bolt measurements available in the 1literature :"{;r
3 [Flemming, et al., (1977), Bond et al., (1979)], the AL-AL,03-AL 2
third order rusty bolt nonlinear products are expected to be 110 [
g, to 130 dB down from the transmitted power, while the fifth order ;
¥ products are expected to be in the range of 125 to 145 dB down
i" from transmitted power. Assume that the transmitted power is
47 dBm (50 wWatts) and that the nonlinear product to be measured L
3 is 145 dB down from transmitted power, in other words -98 dBm and
'Y that the receiver sensitivity is -110 dBm (bandwidth of 1 MHz for -
0 receiver sensitivities of -170 dBm/Hz). The signal-to-thermal
noise ratio (assuming room temperature) for the nonlinear product L
. measurement with a receiver bandwidth of 1 MHz is SNR = -98 + 117 (
% = 19 dB. The signal-to-noise ratio can be improved by using a <
:E bandpass filter with a smaller bandwidth tuned to the desired
j nonlinear response or by averaging the measurement over a period -
of time., The same measurement with a receiver bandpass filter of 11
X 1 kHz can be performed with a SNR = 49 dB. ;‘;{
' The above discussion on the levels of the nonlinear pro- X:L,;-
ducts generated by the AL-AL,03-AL MIM junction (rusty bolt) v
! indicates that a large isolation between transmitters and re- :g“:
'S ceivers is required in the measurements. For a transmitted power régf,’
e of 47 dBm and a receiver sensitivity of -140 dBm, an isolation of =
T about 200 dB between source and receiver is required to reduce il
. the residual interference (without the rusty bolt present) 10 dB 1\,?
: below the receiver noise level. The only way this can be !g.g:z
bt achieved is by performing the measurements in a special anechoic .
chamber and by paying special attention to the screening and e
% oy
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filtering of the equipment, the cabling and the connectors. An
isolation approaching 200 dB between source and receiver,
positioned well within 10 meters in a special anechoic chamber,
has been achieved by Watson (1980). This indicates that the
required isolation and measurement of the rusty bolt nonlinear
harmonic and intermodulation response is feasible.

6.1.2 Rusty Bolt Experimental Criteria and Methodology

In the previous subsection, we discussed the procedures and
requirements of the rusty bolt measurements. In this subsection
we summarize and describe the measurement methodology.

6.1.2.1 Probe Waveform and NLTF Specification Measurement

Sinusoidal steady state probe waveforms will be used to
measure the third and fifth rusty bolt harmonic and the third
order intermodulation. The intermodulation measurement will be
performed with equal level signal sources.

6.1.2.2 System Dynamic Range and Transmitted Power

Transmitter signal sources with a maximum power of 50 W
(47 dBm) in the UHF range 225 to 400 MHz will be used. The
receiver will be tunable and highly sensitive -110 to -140 dBm.
The maximum isolation required to avoid interferences in the
measurement is at least 187 dB.

6.1.2.3 Rusty Bolt Identification and Model Validation

The rusty bolt harmonic and intermodulation measurements
performed at a given set of frequencies will be used to identify
the rusty bolt lumped parameter circuit linear transfe: .unction
(LTF) singularities, the egquivalent antenna impedance and the
combined constants of the Volterra NLTF's up to fifth order. The
identified rusty bolt parameters will then be used to predict

6-6

AN
LIS

}\,s*a LY

ST s Ml K «t

’ .x.\. " '&}; \}4,
N

I . \s( 4 1l\ PO "lv .“ Q%}Q -I lr'!r‘lt IAF o M

S

L]
>4

"

Ea

.fflfi”

>

>

N D
Pl

- o
-,"n"’ﬁ" S,

T e
2

&

e P
el

(W e



o

o o RSB L ahY e s R W iy Gt RS S EARGR S RO R I 3 9 E 30 WK WP Tkt B’ B SV gt el R 8t oM AT S e R,

\&’\{—
S5

% i
LS !
L ‘::
3 3
: Fo
o . . s
harmonic and intermodulation at other frequenices. Measurements »
will then be performed at these frequencies and compared with the e
predicted results, ﬂ;
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SECTION 7
z; CONCLUSIONS AND RECOMMENDATIONS

2oL A

Lumped parameter nonlinear systems which can cause inter-

@ ference and degrade Air Force c31 systems were analyzed and %}
*j identified. The nonlinear system features which are relevant to Qi
;” the EMC performance of equipments were identified in terms of ?Q
) nonlinear Volterra transfer functions. Particular emphasis was =
{f placed on the "rusty bolt"” (Metal-Insulator-Metal junction) non- f%
éi linearity. This nonlinearity occurs in the coupling paths z&
b‘ between co-located transmitters and receivers on board Air Force '
airplanes and can be a primary factor in limiting Air Force c31 2
,; systems performance. 1In addition to the rusty bolt, nonlineari- ij
:& ties in transmitters and receivers contribute to the degradation ;ﬁ
:* of the EMC performance. Because of this, two different situa- '
!v tions were treated in this report. -
'\- In the first, the output of the linear part of the system %?
K can be measured. In this case, a linear system identification és
K technique, such as the pencil-of-functions method [Jain (1980)], :;

‘ can be used to identify the poles of the linear system based on
the system's transient response. These poles then specify the
NLTFs. A survey of linear system identification techniques was 1%
presented, criteria to be used in specifying the probe waveform i
were described, and the types of identification errors that can
occur were described. A sensitivity analysis of the linear

' ‘ﬁfk"
AN )
[SRE2 5
PP

el

) system function identification errors on the NLTFs and the EMC Eﬁ
‘% specification parameters, such as intermodulation and harmonic R
K2 distortion, was performed. i?
E. The second case of interest is the identification of the ;@
% rusty bolt. Because of the strong direct transmission between ﬁp
the transmitting and receiving antennas, the "“rusty bolt" linear .
3} response cannot be measured directly. Under this condition, it ' ;i
X
> 7-1 %f
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is necessary to estimate the poles of the LTF and NLTFs from
sinusoidal steady state third order nonlinear response measure-
ments. A lumped parameter circuit model of the rusty bolt and
the corresponding NLTFs were derived. It was shown that sinu-
soidal steady state probing allows the separation of the
responses of different orders and that it can be used to measure
the frequency response of the third order nonlinear transfer
function. Based on the rusty bolt circuit model and on the third
order NLTF frequency response, the poles of the LTF can be iden-
tified. The rusty bolt NLTF specification parameter constants
can then be determined from harmonic measurements. The errors
that can be encountered in the identified parameters and the
predicted EMC specification parameters were then examined.
Finally, the measurement and instrumentation criteria to be used
in the sinusoidal steady state identification of the rusty bolt

were presented.

The results of the study indicate the following:

1. Mean squared error between measured output and the
output of the identified system is a more reliable
predictor of the errors in the NLTF specification
parameters than errors in pole locations.

Global mean squared error cannot be used to predict
the error in the specification parameters in all
cases, specially when the number of poles is mis-
identified. Instead, an error criterion which is
segmented in frequency should be used.

For the rusty bolt lumped parameter circuit and a MIM
i-v characteristic up to fifth order, the EMC specifi-
cation parameters up to fifth order can be predicted
with good quality provided that the number of poles
are identified correctly and that the errors in the
estimates of the linear transfer function poles and
the antenna impedance are reasonable (say less than 30
percent).
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Based on the results of this effort it is recommended that
the following topics be studied:

L

e e

1, Develop and implement algorithms for the sinusoidal
steady state poles and zeros identification techniques ,
¥ developed under this present contract and evaluate §§ﬂ

-

their performance in noise. The first technique uses }%’
magnitude measurements while the other technique uses i;;
-4 phase measurements of a third order response to iﬁ
identify the poles and zeros. ‘%g
ny 2, Measure a MIM junction on a laboratory bench. %i
7
{ 3. Identify and measure the nonlinear performance of the g%%
fj same MIM junction in an anechoic chamber. Predict the %g
'i system nonlinear performance based on a lumped para- %l
b meter circuit model and refine the model if necessary. -
Al 4. Upon successful identification of the rusty bolt and ﬂ:
h adequate prediction of the nonlinear system perfor- <
> mance in step 3, perform identification on board an o |
Uy aircraft. A word of caution is in order. It should ;;
it be noted that even if the results of step 3 indicate S
% that a lumped parameter is adequate to represent a ¥
( rusty bolt in anechoic chambers, the success of the
“ experiment on board an aircraft is not guaranteed. ’ﬁf
N The reason is that the aircraft rusty bolt will §§
jf probabl, be of a distributed nature and the char- %f
W' acteristics may be time varying. This would require ) i:
y the development of a distributed parameter (transmis- ﬁg
: sion 1line) rusty bolt nonlinear model and possibly igg
. time varying. Nevertheless, usefull information can e
) be obtained by performing the experiment. ;i
' h
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APPENDIX A

LINEAR IDENTIFICATION TECHNIQUES, AND A
DFT-BASED 'RUSTY BOLT' TESTING TECHNIQUE

A.l INTRODUCTION

System identification technology is critical to the effi-
cient characterization of networks and systems from test data.
This appendix presents a summary of some carefully selected
linear system identification (or black box modeling) tech-
nigques. A particularly interesting part of the appendix is a new
discrete-Fourier-transform based technique which employs sinu-
soidal probing to estimate 'Rusyt-Bolt' linear TF from third
harmonic measurement. This is necessary to avoid the influence
of corrupting signals, for example the direct transmission signal
which is a few orders of magnitude more dominant than the linear
component of the RB.

A,2 LINEAR SYSTEM IDENTIFICATION PROBLEM

Linear system identification represents the most well
developed area in the field of black-box modeling. Almost always
the measured signals are in a sampled (digital) form, therefore
it is usual to consider a model of the type B(z)/A(z) where B(z)
and A(z) are polynomials in the z-transform variable. In line
with this convention, we will consider the problem of identifica-
tion in discrete-time, even though the physical network under
test may in fact be a continuous-time system. After a satisfac-
tory model of this type is obtained, a z-domain to s-domain con-
version is easily performed [Jain, et al., (1983); Jain (1980)]

if desired.
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Figure A-1 Linear Identification Problem

The linear identification problem may be stated with the
help of Figure A-1. The parameters of the model are to be found
such that the error between the observed response and the model
response (to the same input as applied to the test system), is
minimized in some sense. Assuming the model order to be n, the
model response is given by the difference equation

x(k)+a x(k-1)+...+a_x(k-n) = -[bou(k)+b1u(k-1)+...+bnu(k~n)]

(A.la)
or by the rational z-transfer function
byt bz L + + b2z
X(z) _ 70 1 *cc n
u(z) -1 -n
l + az + s.0 az
A B(z)
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from (A.la) the model output can be written as ;

\ . ;
W5 x(k) = -f£°(k)e (A.2a) 2
i ¥
e
§ty where the (2n+1) dimensional vectors f and © are defined as
H
x £(k) = [x(k-1)..0ox(k=n) u(k) wu(k=1)...u(k-n)]T (A.2b) :
440 »
WLed
t9ey T .
. o =[a; ....a by  bj...b] (A.2c) i
LRA
3
e
ég; for k € n, It is assumed that the data are observed for k = 0,
LA -
1] se ey K-lo E
f' A natural performance criterion is the sum-of-squares error ?
; SSE)* 1
,""Jf ( )
%Y
) 3
g K-1 2
s J=1 [ex)] (a.3a)
Fans k=n
:
£ b K-l 2 1
S = 1 [ytx) - x(x)] (A.3b)
. . k=n .:
oot K-1
e = 1 [y + £5(k) 0)2 (A.3¢) :

- k=n

N .
3 - LS
BNl

¢

bx ~
93» * The error e(k) from k=0 to k=n-1 is misleading and is therefore 1
T not included in Equation (A.3), ‘
o
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Minimization of J, for instance by setting its gradient to
zero, leads to a set of equations whereby the optimal parameters
can be determined. Unfortunately, these equations are nonlinear
and can only be solved by iterative means (even in the noiseless
case). There are however methods in which the actual SSE is not

directly minimized; rather, a related error is minimized, and the
solution becomes relatively simple.

Three solutions will be given below. These are

1, Equation error method
2. Quasi-linearization method
3. Pencil-of-functions method.

The first technique minimizes the equation error, the second min-~
imizes the true error, and the third minimizes the error in the
approximation of the observed output by a novel set of basis
functions,

A.3 IDENTIFICATION TECHNIQUES

A.3.1 Equation Error Method

Instead of minimizing the sum of squares of the output
error e, the sum-of-squares of the equation error (SSEE)

J = 1 e2(x) (A.4a)
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P
oF o v

€ (k) = y(k)+a1y(k)+...+any(k-n)+b0u(k)+...+ bnu(k-n) (A.4Db)

The equation error € (k) is related to e(k) as shown in Figure A-
2(a) or equivalently as in Figure A-2(b).

)
2
L
o
L]
¥ w [
Test
§ e(w)
4 ' A(z) [—>
Eh i

0 (a)

A“"s ‘ v(k)
:§1 ——d Under -
(‘ . Test
w' ;
_,;;Z} o
L;'?."
A e(k)
3 (b)

Figure A-2 Definition of the equation error
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A
v Minimization of the SSEE with respect to & straightforward-
ly yields the solution
L,
e = (FF)7! Fly (A.5a)
§ where
A)
? . e
3 Y= [Y(ﬂ).....--...Y(K"l)] (AISb) ‘Aj
% »
W and .
¥ .
’ -Y(n+1) ‘Y(n) sse -Y(Z) u(n+1) U(n) co e u(l) ‘
'N . . . . z':';;'*’
._ F = . . . . .‘,“
° ° . ) t'\
a -y(K-l) -Y(K"z) ce e -Y(K"n) U(K) L3 ) s e e U(K-n) a
L -
4
.I ::_.'«
e
( Thus identification is completed by the inversion of a (2n+l) ) |
. dimensional square matrix. In the absence of noise, or at very ):g
> RS
.t low levels of noise (say SNR = 50 dB or higher), good results can Y {3
. be obtained if the assumed system order is reasonable. A flow- g
r chart of the method is given in Figure A-3, “
i: At practical noise levels, the true output error must be i§§
> minimized to achieve reasonable results; an iterative method for h ‘Qt
) this is discussed next. o
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Y Select model order n | R
and record length K , '

B Read test data u(k) | o
3 and x(k) !
&3 s
W Compute the matrix F i
W =
X For k=n, K-1 i
W construct the vector f(k) e
e T A

Form f(k)f (k), add to F(k-1) F4
a F = F(K)
'y

Form the vector y B

|
b3 T

Compute F F and
its inverse B

i Compute the estimated
N parameter vector
" via (5a)

Check normalqized

root mean-square error

34 between the actual and
' model responses
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Figure A-3 Flowchart for implementation of the e
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A.3.2 Quasi-Linearization Method [Cadzow (1976)]

This method is based upon the fact that the model output is
a function of the model parameters. That is, x(k) = x(k;0).
Suppose that §.denotes the initial guess (or current estimate) of
the model parameters. Then, expanding x(k) in a Taylor series
about § and retaining only the first two terms gives

X(k) + sT(x) (o - 8)

ax(k,e)

90

s(k)

Substituting into (A.3b) and setting the gradient with
respect to © to zero gives the update equation

(A.7a)
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Computation of the Sensitivity Matrix

To obtain the sensitivity vector let us examine the model
equation (A.la) closely:

n

n
-) a;x(k-i) - ) b,u(k=-1)
i=1 i=0

The entries of s(k) consist of two types; rows 1 through n con-
sist of partial derivatives with respect to aje and rows n+l
through 2n+1 consist of derivatives with respect to bj. These
entries can be computed as follows:

pi(k) = ax(k)/aai
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X
N These p;(k) can be computed by solving the difference equa- i
;s tion obtained by differentiating (A.8) with respect to a;: £
i o
"
Vg n A
rr = - - - -3 w
’ p; (k) _Z_l ayp; (k=3) = x(k=i) (A.9a) B
= e,
u ¥
"'g "
;1; Note that pj;(k) = pj;(k-i+l). This observation together with b
L’ R
» (A.9a) suggest the block diagram of Figure A-4(a) for the compu- B
| tation of p. (k).
i
i
l-‘,? ‘,
Y
_ p, (k) p (k) B
53 x(k) - 1 1 —i+1] i -
) 2 — 2 e
v a(2) b
v .
P (a) 5
' =

Y, a(k) qo(k) q, (k)

g~ A(2z)

(b)

'j Figure A-4 Computation of the sensitivity vector *ﬁ
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These g;(k) can be computed by solving the difference equa-
tion obtained by differentiating (A.8) with respect to by:

n
qg(k) = -1 a. q;(k=-j) - ulk-i) . (A.9b)
j=1 3

Note that qj(k) = gg(k-i). This observation together with (A.9b)
suggests the block diagram of Figure A-4(b) for the computation

Both Equations (A.9a) and (A.9b) are solved with zero
initial conditions. Also, in actuality, A(z) is used in place of
A(z) and x(k) in place of x(k) in Figure A-4 so that the entries
of s(k) are evaluated.

The method is quite robust to noise in the measured data.
However like most iterative methods, convergence to the correct
solution is not assured and is critically dependent on (a) the
initial guess for the parameter vector, and (b) proper selection
of the step size a at each iteration. Frequently, the equation-
error method is first used to yield a parameter vector that is
used as an initial guess for the quasi-linearization method. We
also remark that the method is also known by the name ‘'Modified
Newton-Raphson method for system identification'. A flowchart of
the method is given in Figure A-5.

Next we discuss what may be considered as an advanced
method. It uses a set of refined basis functions for the identi-
fication procedure. The method is the pencil-of-functions
method. It is robust to additive noise in measured data, and is
non-iterative and therefore computationally efficient,
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Select model order n
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Read test data u(k)
and x(k)
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N
find sensitivity vector s(k)

N N
Compute P and gradient g

For k=n, K-1 _
form s(k)s'(k), add to P'(k-1)
form ¥(k)[y(k)-X(k)], add to
Y(k-17

NN n N
Finally, P=P(K), g=g(X)

Compute updated parameter.
vector 9§ via (7a).

Check convergence

Yes

Check normalized mean-
square error

Figure A-5 Flowchart for implementation of the
guasi-linearization method
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A.3.3 Pencil-of-Functions Method [Jain et al., (1983);

Jain (1980)]

The pencil-of-functions technique is best explained by
means of Figure A-6. The measured input and response signals (of
the network under test) are impressed upon the two identical cas-
cades of filters as shown. The transfer function of each of the
processing filters is Q(z) = 1/(1-qz'1), where the pole q lies
between -1 and 1. More will be said about its selection later.

yylk)=y(K) ) y,(0)

uo(k)su(k) uy (k) uy(k)

—eip Q(zZ) po= cocee _.{ Q(z) |

Qz) = 1/(1-q27))

Figure A-6 Generation of information signals




The signals generated at the nodes of the cascades are
called information signals. Their Gram matrix is defined as

K-1 T
F= ] £(k) £(k) (A.10a)
k=0

£k) = [yg(k)eeesay (k) ug(k)eeou (k)] 7 (A.10b)

Note that the vector f is (2n+2) dimensional, so that the matrix
F is (2n+2) x (2n+2) dimensional and clearly symmetric. The in-
formation signals are generated by the first order recursive
equations

= qy;(k-1) +y,_,(k), y;(K) =

q u; (k-l) + u, 1(k), ui(K) =0 (A.11b)
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The theoretical development of the method is somewhat
involved and can be found in [Richmond, Jain (1983); Jain
(1974)). Here, we state the solution directly. The transfer
function of the model is given by*

n R
.z v Dn+1+i ( 1 = qz~1) n-l/D
H(z) = ln . (A.12)
-1y n-i
i); /D (1 - qz77 )" /p

The numbers D; are the diagonal cofactors of the Gram matrix F of
the information signals, and D = lDI + ... + YD D +1 Remarks:

° The pole q determines the type of information, or

basis, signals generated. If the network under test

is primarily lowpass (compared to the sampling fre-

gl quency), then a value between 0 and 1 is desirable.
v; Note that the approximate -3 dB frequency of the pro-
k> cessing filters is then given by &n(1l/q)/T Radians/s
- where T denotes the sampling interval.
ﬁs
ﬁﬁ ° In the absence of noise the model coincides with the
%l true system function if the system is indeed linear,
f‘ rational and if the model order equals the true order.
%
ﬂ: ® When the data are noisy, a noise correction procedure
o may be applied as described in [Richmond, Jain
é (1983)].
K*,
N
} * Equation (A.12) assumes that the term by in Equation (A.lb) is
4 not zero; when by = 0, t?en Equation (A.12) should be modified
: slightly to include az term in the numerator [Richmond, Jain
_‘i" (1983 )] .
3
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A flowchart of the implementation of the method is given in
Figure A-7. A complete user oriented program can be found in
[Jain, et al.,, (1983)].

A.4 A HIGH ACCURACY DFT-BASED TONE TESTING TECHNIQUE

A high accuracy tone testing technique is developed here.
This method will be shown to be particularly suited for the
rusty-bolt modeling problem. The primary reference for this is a
paper by Jain et al. (1979) which permits high accuracy measure-
ment of single and multiple tones, even in the presence of
noise. The technique gives values of frequency, amplitude and

phase of each sinusoid.

The key formulas are given here only for the single sinu-
soid case: for the multi-tone case one may refer to [Jain, et
al., (1979)]. Suppose the tone is

x(t) = A, sin(2nf

) t +0,)

1

and its sampled values

x(kT) = A, Sin(2nf

1 kT + ¢1), k = 0, 1’ se e K-l (Aol3b)

1

where we have taken the time reference (t=0) to be the instant of
the first sample. It is convenient to rewrite (A.13b) as

_ oo
X, = Ay S1n(i— Ak + ¢1)
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3 Select model order n

. and record length K _
¢ Read test data u(k) %*

i and x(k) {
» Select filter pole o

] »
bt
£ Generate information ihas

b} signals, form f(k)

—
P Compute the matrix F et
P | For k=0, K-1
¥ T =
o form f(k)f (k), add G
f' to F(k-1). "f

]

: F = F(k-1) | i,
B3] Compute unit g
': noise matrix
“; :

' Estimate w
1 variance of o
A noise "f‘
2 F=F-o%W v
M Compute the diagonal 7 S
: cofactors of F or F <
- ot
w Find the transfer
;‘.& function via (12)

: |

%‘ Check normalized

:: mean-square error

: |

4.‘

',: Figure A-7 Flowchart for the implementation of pencil-of-functions L
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5
[/
i
iy = =
A fl/f0 L + 6 (A.134)
Here f; = 1/KT is the frequency resolution of the DFT and
y = | A_], i.e., is the truncated integer value of A (note
) that 0<§<1),
A typical value of K for high accuracy measurement is 2048
= 211. Also, the sampling interval is so chosen that all fre-
. quencies of interest lie between bin 10 and 100 (so that 10 to
d 100 cycles of each of the sinusoids is encompassed in the data).
The steps involved in the computation of high accuracy
¥ values are the following:
t
: Step 1 -
3 Compute the discrete Fourier transform (DFT) via the fast A
! Seds
algorithmic version (FFT). Recall that the definition of the DFT ol
K-1 -j Rzl km
X(m) = [ =xe (A.14a)
p k=0
L
{ ) |
3 In general, the DFT values are complex. Convert them to polar %:{
A form S
y e
ja
X(m) = S(m)e (A.14Db)
3
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- Step 2

A

The largest two values of the magnitude DFT are detected.

¥

) These values will be found to be consecutive, S(¢) and S(2£+1), §§
fk' and the signal frequency will be sandwiched between the fre- gg
| quencies £f3 and (¢+1)fg . L
, %
"3 The frequency is then computed as P
:ﬂ ~
“ s = 1 (A.15a) R
l.q 1 + s(‘ L RN
o8 b
Bl
{ ¢

i ~ ~ ﬁ
; £, = (L48)f (A.15b) 9
Y The amplitude and phase are next computed, If S(R) is i
) ) .
E largeir than S(2+1), then (A.l6a) is used, otherwise (A.16b) is i
! used.

R

? Al = l:.(_ __S_(!_)._ , ;1 =a, - as + % (A.16a)

g Sin %§

N [
Y 2 2(1-3) S(2+1) " 2 " "
e A =23 o r by Ta, - als-l) + 3 (A.16b) o
K. Sin v (1-$) pay
Lo A “
b o
where a = ¥ (K-1)/K. it
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A.5 ESTIMATION OF LINEAR TF OF 'RUSTY BOLT' BY TONE TESTING

(VIA THE DFT APPROACH OF SECTION A.4)

It was shown in Section 4.2.2 of the main text that the
estimation of the linear transfer function of the 'rusty-bolt' is
complicated by the presence of the highly dominant direct trans-
mission signal. The DFT approach is ideally suited here for
sinusoidal measurements. Specifically, we will show that the
linear transfer function may be computed from phase measurement
at the third-harmonic frequency. The cases where the RB LTF is
either a single pole or two-pole TF are discussed in detail.

Consider the block diagram of Figure A-8 where we have
ignored the presence of fifth and higher order nonlinearities.
Their presence, however, may be incorporated without complicating
the procedure because of the resolvability of the DFT approach.

1(”.
Hl(s) __,(\t__..

H3(sl,52,s3)

y3(t)

Figure A-8 Simplified diagram of the 'rusty-bolt'
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Suppose the applied signal is

x(t) = A Cos(nltw) (A.17)
so that the overall response becomes

y(t) = d(t) + yl(t) + y3(t)

Here, d(t) is the direct transmission component, y;(t) is the
linear response of the RB, and y3(t) is the third order response
of the RB. The expressions for these components are given below:

GA Cos(nlt+a)

AlHl(Ql)l Cos(ﬂlt +a + ¢1) (A.19Db)

3
:—-{|H3(al. 2, -nl)l Cos(,t +a +¢2)

|Hy(2, 8, 2,) | Cos(3,t + 3a +4¢,)}  (A.19¢c)
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where the phase angles ¢ij, i =1, 2, 3 are phases of the complex
numbers within the modulus signs. Also note that

Hy(w,, w,, ws) = 8H(w,) H(wz) Hwj) H(w, 4,4 ,) (A.20)

The third harmonic component is the second term in (A.19¢) and
will be denoted as y3'(t).

Using the DFT approach the following measurements can be
made very accurately:

20 A, a ‘ (A.21a)
A3

B3' = 4 ‘H3(nl' gl' 91]‘ | (A.21b)

03' = 3a + 03 (A.21c)

Two cases are discussed below in detail, the single pole
case and the two pole case. Of these, perhaps only the latter is
useful from a practical standpoint.
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Single Pole Case:

Only one test with a tone A Cos(2,t + a) is required to be
conducted. Let

K
Hl(s) = Ts+p)

so that (A.2lc) can be written explicitly as
¢3' = 3 -3 Arctan(nl/p) ~ Arctan( 3 ,/p) . (A.23a)

Since ¢ and ¢3' can be calculated by the DFT measurements on the
input and output waveforms, we can solve for p. Even though
(A.23a) is nonlinear, the solution is straightforward on the
computer,

Now using (A.21b) we obtain

k' = 4B;* |(39,+p)> (33 +p)|/a° (A.23b)

so that BK‘, or (8)1/4K, can be computed. Clearly, K cannot be
computed separately. However, in the prediction of third order
effects, we actually need K4. With this observation in mind, the
estimation of H;(s) is now complete.
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Two-Pole Case:

-

+

Let

o —
G

P

s

K(s+q)
(s%p,)(s+D,)

Hl(s)

5

Three tests are conducted, each with a single-tone input, as

listed below:

AR A

Test Input Computed Quantities

A Cos(R,t + aj) ¢3'(1), B3'(1)

A Cos(fi,t + ay) : $3"'(2)
A Cos(fizt + aj) $3' (3)

Then from (A.21c) we have
¢3'(i) = 3a, + 3 Arctan(a,/q) - 3 Arctan(2,/p,)
-3 Arctan(ﬂi/pz) + Arctan(sli/q)
- Arctan(39i/p1) - Arctan(3li/p2), i=1,2,3

These three equations can be solved for q, p; and p,. Finally,
8k4 can be determined from (A.21b) and B3'(1).
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! B
. THE ELECTRIC TUNNELING EFFECT AND PROPERTIES ,
ﬁ OF A METAL-INSULATOR~-METAL (MIM) JUNCTION o

i

&
s B.l1 THE ELECTRIC TUNNELING EFFECT &
Eﬁ The theory of electronic tunneling through an insulating 3

layer goes back to the early 1930's. However, up to the present g
2y time there is no general agreement regarding the correct form of
e
ﬁk the tunneling equation for thin insulating films (< 50 A). Some

R
) of the problems include the following [Bond, et al., 1979]:

L | y
g@ 1. The applicability of parameters such as the dielectric

fﬁ‘ constant (which is a macroscopic parameter) to a few

Ty

A atomic layers.

I} g
e 2. Accurate evaluation of contaminant effects on the &
e e
e electron scattering surfaces. N
W o

iy 3. Integral expression which can presently only be solved g
:ﬁg with approximations. _ =~
. t . C.
a3
:# The equilibrium conditions for two metallic conductors

separated by a thin insulator film (MIM junction) require that k.
the top of the energy gap of the insulator be positioned above
the Fermi level of the conductors. The insulating film intro-
duces a potential barrier between the two metals which interferes
with the flow of electrons between the two metal conductors. : |
There are two conditions for which an electric current can flow ’
through the insulator film between the two metal conductors,

namely:
B~-1
'm“m .;‘
2 ‘B, b} s gt » - > bt K \ ¥ - o * >, N W - N Ut
:j(‘,l.l: «.;':‘:?:’;)‘3"‘ e X Q‘{!Qﬂ: AT "“'152 ~‘;';‘A‘9“!: & :ii"\::: ot N “‘I‘:;:O:.. 4 ‘a";:l"' Ot ‘.:::,‘tf"\; WL :A Wittt :
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The electrons in the metals have enough thermal energy
to surmount the potential barrier and flow in the con-
duction band.

The barrier is thin enough to permit its penetration
by the electric tunnel effect. (In other words, if a
particle (electron) with energy E is incident on a
thin energy barrier of height greater than E, there is
a finite probability of a particle penetrating the
barrier).

Simmons [1963] conducted an analysis of the above two

conditions for low temperature conditions under which the thermal
current can be neglected, thus restricting the current flow
between the two metals to the tunnel effect.

The probability P(E,) that an electron can penetrate a
potential barrier height V(x), as shown in Figure B-1, is approx-
imately given by Bohm [1951]

P(E) = exp {%1 f2 [ 2m( v(x) - Bx)]l/zdx}
8

mass of electron

Planck's constant

o

[P

potential barrier height
mvx2

energy component of the incident
electron in the x direction.

BTy v
S o

2

2 "*?tﬂa&u, Lo .- ‘:} “‘i‘\tu":t}.“:*h(ﬁn

,*‘l.‘ \



W

VACUUM LEVEL
WORK FUNCTION

oV
L 2

' l

METAL | ms%: “e—— METAL 2

FIGURE B-1 GENERAL BARRIER IN INSULATION FILM
BETWEEN TWO METAL CONDUCTORS
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S1:,89 = limits of barrier at Fermi level,

The number of electrons N; tunneling from metal 1 to metal 2 is

N d e e et

given by
8 v E
] m 1 m
4 = (J)' ven(v,) p(E,) »dvx = E({ n(v,) P(E,)AE, (B.2)

where E; is the maximum energy of electrons in the metal and
n(vy)dv, 1is the number of electrons per unit volume with a

ST

e

velocity between v, and v, + dvy. The number of electrons tun- R
neling from metal 2 to metal 1 can be determined in a similar P
manner since the probability P(E,) is the same in either direc- '
tion. If we assume that metal 2 is at a p051t1ve potent1a1 \

with respect to metal 1 then the net electron flow through the

barrier is given by N = N, - Nj. S i‘f

Simmons [1963] derived the following current-voltage rela-

tionship for the generalized barrier

S

) J =3, {% exp(-A% /2) - (% +ev) exp[-a(?¢ + eV)l/z]} (B.3)

where

B-4
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Ee
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4
g X -

N, -3
&% ',{-
3 ;q,"
gl 5
_7 N _ 1 52 v"\
» ¢ = s I ¢(x)dx
N s, |
"':, i,
By
é 3 and ]
L

J = tunnel current density

charge of electron

o
]

-

e~
o

¢ = mean barrier height =
vl s1/82 = limits of barrier at Fermi level
1.
13 -
, As Sz Sl |
9 m = mass of electron ‘
i’i v = voltage across insulating film :
o h =  Planck's constant. 5
" The interpretation of the above equation is that a current den- i
Y o
< sity J ¢exp[-A¢1/2] (first term) flows from metal 1 to metal 2 Q
5 B
\r‘, and the second term in the above equation is a current density
b flowing from metal 2 to metal 1 which results in a net current 3
} Py
- density J. The current-voltage characteristics can be obtained
‘ by integrating the current density. The mean potential barrier k
2l height will be a function of the insulator (dielectric constant). ‘;
" The current-voltage characteristics for metal-to-metal '
junctions may be approximated (Sankar [1978]) as :f:a
&S
5
s
o
i= a[exp(Blv) - exp(-8,v)] (B.4) o
where a, B8; and B, are the characteristic constants of a par- o
ticular nonlinear junction. When the nonlinear current-voltage |
8 chracteristic is symmetrical, then 8, = 8,. ;x
?\, 'M\:{
X o
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B.2 PROPERTIES OF THE METAL JUNCTION NONLINEARITY

There have been many investigations carried out by measure-
ment of the properties of the metal junction nonlinearity.
Watson [1980] measured harmonic and intermodulation products
generated by metal-to-metal and carbon fibre junctions, in
structures irradiated by radio transmitters at HF, VHF and
microwave frequencies. He found that except for very high
incident power where saturation and higher order effects occur,
the results of very many measurements of backscatter power show
that for external nonlinearities, the power law of a given
harmonic or intermodulation product is the same as the order of
that product. This implies that a small-signal nonlinear model,
such as provided by a Volterra series, can be applied. This is
not necessarily the case for nonlinear products that are
generated internally in transmitters and receivers. Another
interesting result is the fact that measurements of harmonic
generation for metal junctions show significant temporal vari-
ations even when the junctions are stationary.

The average power of the received harmonics or intermodula-
tion products is given by the back-scatter equations (Watson
(1980})

[Pthtl n Ft2%2m e 12
2 2 n,mrr

41rRtl 4nRt2
2 2
Rr

(47)
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power of the received harmonic
transmitter power

transmitter aerial gain

received aerial gain

receiving wavelength
the power law

harmonic cross section.

The subscripts 1 and 2 refer to the parameters of transmitter 1
and transmitter 2,

Flemming et al., [1977]) used harmonic radar detection to
locate nonlinear metallic junctions. For a metal junction to be
observable as a harmonic target it must receive the incident
radiation in such a way that a voltage is generated across the
nonlinear junction. The nonlinearity produces currents at har-
monic frequencies which transmit the signals to the receiver.
The rusty bolt nonlinearity, therefore, may be considered as
three parts: a receiving aperture, a nonlinear element and a re-
radiating aperture (antenna). Spectra measured by Flemming et
al., using semi-conductor and metallic targets are shown in
Figure B-2. Notice the suppression of even harmonics in the case
of the metallic target. This is because a typical metal junction
has almost symmetrical transfer characteristics; that is, elec-
trical conduction is equal in either direction. When a power
series approximation is used, the symmetrical characteristic will
contain only odd-order terms.
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(From Flemming et al., (1977))

Figure B-2 Measutred Harmonic Spectra
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Watson and Flemming et al., have derived harmonic and in-

X termodulation backscatter equations that could be used to predict

4 ]

; intermodulation interference at given communications platform

~ sites, but these cannot be used in practice because they predict

- received power for individual junctions. 1In general there will

§ be many contributing junctions on a site and therefore the ranges

L%

S between the target and the transmitting and receiving antennas

4

; will be indeterminate. Furthermore many junctions may be in the

near field because of the electronically dense platforms. Watson

f- has suggested an alternative way of quantifying the nonlinearity

ﬁ of a site in the form of relative levels of the fundamental and

i the harmonics or intermodulation products in terms of a coupled :
" network, i.e., RE
Ky B
\ o
) P (nfy) _ [521(“f1)]2 pn-1 (B.7)
L5 . Y

v Prl fl l 821 t -
3 )
;ﬁ where
K-.

g

lé P.(nf;) = the power of the received harmonic

> Py = the transmitter power

n [ ]
K4
(f S,51(nf;) = S parameter describing the overall harmonic

> coupling between transmitter and receiver
N due to a fundamental transmission.
‘s $21 = conventional S parameter describing the

N fundamental frequency coupling between

1 transmitter and receiver.
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&

. There were no indications of frequency dependencies for harmonic

';';-, generation of actual junctions over the frequency ranges measured

: by Watson. However the size of the structure was important.

3: Harmonic re-radiation decreased rapidly if the 1length of the %

| structure is less than a quarter wavelength of the irradiation n

A frequency. S

: 8

Arazm and Benson [1980] published results that show some N

7 frequency dependence for the third order intermodulation products

= generated by contacting faces between similar metals. Their =

:» results are shown in Figure B-3.
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VOLTERRA TRANSFER FUNCTIONS FOR A "RUSTY BOLT"
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APPENDIX C
' VOLTERRA TRANSFER FUNCTIONS FOR A “RUSTY BOLT"
3 EQUIVALENT CIRCUIT
=
3 C.1  "RUSTY BOLT" MODELING
3
5 Some authors think of the "rusty bolt"™ (MIM junction) as a
‘3
pair of back-to-back diodes with an antenna system as shown in i
n Figure C-1. The i-v relationship of the back-to-back diode pair
EZ is then approximated as:
p
E‘
v 8
> . 3 .
3 ig = kyvg + k3vg (C.1)
4
P .
v thus neglecting nonlinear capacitive effects [Uslenghi (1980)). e
o Values are given to the constants k; and kj to match the computed
% and measured results. Still other authors define some ideal non-
¥
{ﬁ linear element, usually memoryless, without any reference to any
’ real existing device. -

A commonly accepted and more sophisticated lumped parameter
equivalent circuit for a MIM junction (rusty bolt) which was used
by Long and Schwartz (1974) is shown in Figure C-2., An antenna

r and a shunting capacitance apply an a.c. voltage across a non-
- linear resistor. The antenna is represented by its Thevenin
7] equivalent impedance Z,. The junction is modeled by a junction
1 resistance ry in series with a parallel combination of a junction X
. capacitance impedance 2z, and a circuit element with nonlinear Vf
B o
N current characteristic i (v). The capacitance is considered to *§§
N Ly Fe
! be linear. This is not unreasonable since measurements by Bond ,3*
iy et al, (1979), on AL-AL,03-AL junctions showed no measurable Nt
| ek
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Figure C-1 Back-to-Back Diode Pair with an Antenna System
which Represent a Symmetrical Nonlinearity.
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Figure C-2 Simplified Circuit Model for the MIM Junction.
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J‘;?.,
ot
o
, change of junction capacitance as a function of applied bias vol- ;;;,;
j tage. Bond et al., concluded that the dielectric constant of ;:{?;
q AL,03 is not a function of voltage and will conduct UHF signals }"g?&
in a linear manner. An oxide layer is a common insulator for My
many of the rusty bolts path nonlinearities on board Air Force -
; airplanes.
3
H There is evidence that typical MIM junctions have almost
{ symmetrical i-v transfer transfer characteristics. In other
. words electrical conduction is about equal in either direction.
j{ This implies that when a power series anproximation is used, the 8
symmetrical characteristics will contain only odd-order terms. ;.i
h .
- C.2 VOLTERRA TRANSFER FUNCTIONS OF THE RUSTY BOLT
; Several methods for computing the Volterra transfer func-
! tions have been derived in the literature. Some of the methods
! are the method of exponential inputs (also known as the harmonic ‘
§ input method), the nonlinear current method [Bussgang, et al., ,‘:
v (1974)] and the direct expansion method. Among those mentioned, g;wf“
L the harmonic input method is particularly well known and allows !
h the nonlinear transfer functions to be determined recursively.
However, the calculations involved for higher than third order
:‘;‘ functions are cumbersome and seem difficult to implement on com-
';i puters (Fliess et al., (1983)]. 1In the discussion that follows, w0
f‘ we will use an expansion method where we manipulate the equations -‘
v until they are brought into the form of a Volterra series expan- .%}
sion. The Volterra transfer functions can then be found by ‘:::;E
5 taking the n-fold Laplace or Fourier transform of the Volterra
kernels. ﬁ
W
o A Norton's equivalent circuit for the MIM junction is shown 2%
i in Figure C-3., The antenna impedance Z, and the junction resis- E
;‘ tance rq have been combined into an equivalent impedance Zg. The a:I
- driving current source i,(t) is the convolution of the antenna -
: i
2 c-3
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Figure C-3 Norton Equivalent Circuit for the MIM Junction.

Vg (S) f
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Figure C-4 Circuit used in Determining the Linear Voltage vl(t).
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driving voltage v,(t) and the equivalent admittance (i{nverse of

1< the impedance 2Z,). The nonlinear exponential current-voltage ;
‘g characteristic of the MIM junction discussed in Appendix B [Sim- fl
§
) mons (1963)] can be expanded into a power series S
" F
I !
4 '
oy i, = I k" (C.2)
“:2‘ d n n
iy
H
“' where k, are the series coefficients which are a function of the §’J
%“ dielectric material, work function of the metal, the electron §
F‘ charge and mass, Planck's constant, dielectric thickness and &
: junction geometry. The current through the nonlinear resistor, ,"
2 i
‘} id' can be interpreted as a set of voltage controlled circuit N
1
a sources connected in parallel across the junction capacitor. i
Kt ~
C.3 LINEAR RESPONSE AND TRANSFER FUNCTION ;ﬁ
* 9‘:}\
‘ ’;" We will now obtain the linear impulse response of the v
R equivalent circuit for the MIM junction by considering i,(t) as
2 an input current source and v(t) as the output. Ultimately we 3
;j", wili be interested in the linear and nonlinear transfer functions
:%; between the input and output voltages.
Ka )
:&‘: In general the voltage response v(t) can be expressed as
‘u’(a ‘
| L
S - 5
;}, %
§.,. vit) = 1§ vk(t) ¥
~3 k=1 E
¥ 1

where v, (t) denotes the k'th order portion of the response. To

o s
L:‘% determine the 1linear portion of the response, the nonlinear ’;3?
»;' voltage controlled current sources can be ignored. The circuit %
to be analyzed is shown in Figure C-4. &
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e
%
i The linear voltage, v)(t) is given by
&,
3 vi(t) = [ () i (t-t1)dr . (c.3)
L1 -l a
»
:; The Laplace transform of v;(t) is equal to
:3
. Vyls) = H (s) I, (s) . . (C.4)
B
5
lj The transfer function Hj(s) can be obtained from the node equa-
5& tion
]
2"
” Vl(s) Vl(s)
"y
B v, (s) Zo(s) 2o(s)
2‘: Hils) = 1157 % 7 (51 7 z'—(sT 7 klz (512 (8 (C.6)
,‘y'
;ﬂ The voltage transfer function is then given by
%%
3 - "z N Z.08) + K;Z2,(8) 28T °
Y§ vl Va(s) Ze(s) ze(s) + 2. s) + klze s) 2.(s

(C.7)
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SECOND ORDER RESPONSE AND VOLTAGE TO CURRENT TRANSFER

FUNCTION

Next, we consider how the linear circuit in Figure C-4 must
be modified if we add the second-order voltage controlled current
source k2v2 to the system and seek to determine the additional
second order response v,(t) which is only due to the linear
voltage v;(t). Clearly, we must add a current source k2v12 to
the linear circuit as shown in Figure C-5. The second order
response is then given by

hl(t) Vlz(t-T)dT

t)i(t-ry-t,)ar,

1(t-t3-t,)drpdry .

If we let 6 = 1) + 13 and 05 = 1, + T3, then we can write the
above equation as

vy(t) = -k, I/ hl(t3)
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Y Figure C-5 Circuit Used in Determining the Second Order
Response v,(t).

\v3 (t)
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o Figure C-6 Circuit Used in Determining the Third Order
e Response v3(t).
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hy(0,.0,) = -k, / h, (1) hl(ol-t) hl(oz—r]dT

and the limits of integration are understood to be from -« to =,
The second order Volterra transfer function can be obtained by
making use of the multi-dimensional Laplace transform. Taking
the 2-dimensional transform of Equation (C.12) yields

Hz(sl,sz) = -k, H1(81+82) Hl(sl) Hl(sz) .

The above equation shows that the second order output voltage to
input current transfer function depends only on the constant k,
and the linear transfer function H;(s). Therefore, the second
order general transfer function depends only on H;(s) and the
coefficient kj.

C.5 THIRD ORDER RESPONSE AND VOLTAGE TO CURRENT TRANSFER
FUNCTION
In order to determine the third order response one needs to
consider the voltage controlled current sources k2v2 + k3v3 as
the driving source of the 1linear network. The third order
voltage v3(t) can only be due to the combinations of voltages v,
and vy. The source driving the network is

2
v® + k3v

2
k 3. kz(v1+v2) + k3(v1+v )3

2 2
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The terms that contribute to the third order response are shown
in Figure C-6. The third order response v3(t) from Figure C-6 is
then given by

[ J
valt) = -_£ h,(t) [2k2v1(t-r) vy(t-t) + k3v13(t-1)]dt (C.15)
Substituting Equations (C.3) and (C.1l1) into (C.15) yields
3
valt) = -2k, [[]] hy(t,) hl(tl] h2(12,13) 11}-1 ia(t-t4-ti)dtidt
3
- ky 11/ hy(t,) 111 1(ri) i (t-t, i)dtidr (C.16)

By making a change of variables o, = 1, + Tie O = T4 + Ty,
03 = T4 + T3 and rearranging we can write the expression in Equa-
tion (C.16) as

1l

3
valt) = [[f hy(o,, 0,,03) T i (t-0,)do, (C.17)

i=1
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h3(al,oz,o3) = -2k, f hy(t,) hlo,-1,) h(o,-1,, o5-1, )dr,

(C.18)

= k3 [ () my(og-1y) hy(op-1,) hy(og-1,)ar,

The third order Volterra transfer function is obtained by taking
the 3-dimensional Laplace transform of Equation (C.18) which
yields

83(31,32.33) = -2k, Hl(s +s +s3) Hl(sl) 32(52,33]

- k3“1(sl+52+s3) Hl(sl) Hl(sz) Hl(s3]

Hy(s,+s,+s,) Hl(sl)[-2k2H2(sz,s3)
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3“‘1
R We can now substitute Equation (C.13) into (C.19) which yields ’K
b H3(sl,82,s3) = Hl( s,) Hl( 32) Hl( 83) Hl(sl+sz+s3) .
B
Vo e
:;5 [ 2k, H (s, +s;) k3] . (C.20) 5
=
iy The third order transfer function thus depends only on the con- ,
;‘ stants k,, k3 and the linear transfer function.
“iof}‘
S
u C.6 FOURTH ORDER RESPONSE AND TRANSFER FUNCTION %
‘E:: We now consider the fourth order responée. The driving
j% : sources of the linear network are the voltage controlled current
g‘ sources k2v2 + k3v3 + k4v4. The fourth order voltage v,(t) can
only be due to the combinations of the voltages v;, v, and vj. 2
B The source driving the network is then
i
“”
2 3 4 _ 2 3
kv + kavo + kv kz( v1+v2+v3) + k3( v1+v2+v3) -
e
5
i .
.
e + k4(V1+V2+V3) . (C.21)
( ) ]
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The terms that contribute to the fourth order response are shown
in Figure C~7. From Figure C-7, we find that the fourth order
response v,(t) is given by

v (t) = --‘]. hy (1)[2k,v,(t=1) valt=1) + kv, 2(t-1)
+ 3kyv, 2 (e-1) vy(e—r) + kyvy* (t=1)]ar

Substituting Equations (C.3), (C.11), and (C.17) into (C.21)
yields

"2y [II11 mysg) m(ey) mylegirgey) B i lergor Jor e
' 4 ,
'2k2 IIJ’II hl(ts)hz(rllfz)h2(13,1") illlia(t-ts.ti)dtidt5~

4
-3k3-[]III”hl(tS)hlttl)hl(tz)h2(13'14)iilia(t-tS-Ti)dtidTS

S .
-k, 1111 hl(rs)hl(tl)hl(tz)h1(13)h1(t4)izlia[t-ts-ti)dridr

(C.23)
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We now can make a change of varigbles 0;j =Tg + 7y (1 =1 to 4) e
8 and rearrange the above equation to yield §$
v 4 —r
v (t) = 11 h4(ol,c2,o3.o4) il!1 ia(t:-ai)doi (C.24)
% =
P «
»
A
i where
[}
hy(0,+0,,045.0,) = -kz..{ [2n,(v)n (0 -t ) hy(0 =14, 05-T, 0,-T,)
.. 3
L .
: + hy(ve)hy(0,-1., 0,1 )h (050, o0,~Tg)]ar,
I _ [_J _ _ _ _ ﬁ.
. 3k3_£ hl(tslhl(a1 15)h1(02 rs)hz(o3 Te 0, Ts)d‘ts
%

© 4 »
: : -k4_£ hl(rs) 121 hy(o -t )ar, . (C.25)
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The fourth order Volterra transfer function can now be obtained

5 by taking the 4-dimensional Laplace transform of the above equa- r*
W tion which yields b
x bt
{ﬁ e
l 4
o Ho(s)rs508308,) = -k, H (s +s,+s,4s,)[Hy(s,,5,) Hy(55,5,) fg
N 2 r
LR <
+2H1( sl)H3( 52,53,54)] !‘
2d Lae
A $a
B b
R ~k3Hy (s +s 4348, 0y (s,)H,(s)) Hy(55.5,)
A =
3 ‘\: “i .
:\E -k4H1(sl+sz+s3+s4)H1(sl)Hl(sz)Hl(s3)Hl(s4) f
y (C.26) B
Tg f
it "
h The second order and third order transfer function depends z;
{ only on constants and the linear transfer func:ion, Therefore
%} the fourth order Volterra transfer function will only depend on
Cx the constants k,, k3, k4 and the linear transfer function.
ey
( C.7 FIFTH ORDER RESPONSE AND TRANSFER FUNCTION
Y
;; We will now consider the fifth order Volterra transfer ;gg
N function for the simple rusty bolt equivalent circuit. The gg
§: driving sources of the network for this case are the voltage con- i
: trolled current sources kzvz + k3v3 + k4v4 + k5v5. The fifth :ﬁ
iﬁ order voltage vg(t) can only be due to the combinations of the 3%’
. . . B
;h voltages v, v,, v3 and v,. Thus the driving source becomes 5%
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2V :

4 5 2
Kk + kavT + kv o+ kv kz(v1+v2+v3+v4)

3
+v3+v4)

+ k3(v1+v2

+ k4(v1+v +v +v4)4

2 '3

5
+v +v4)

+ ks(vl-w2 3

The terms that contribute to the fifth order response are shown
in Figure C-8, Following a procedure similar to the previous
section we get that

vg(t) = IS h5(01,02,03,o4,05) ia(t-oi)doi
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[ ] . .
h5(01,02,03,o4,05) = -2k2-'f. hl(r6)hz[ol-ts)hz(al-ts,dz-ts)
h3(o 3"T61%4~Tgr95~" 6) ar ¢
. .
-2k2_.{ hl(16)hl(ol-ts)h4(oz-16,o3-r6,04-r6,os-16)dt6

© .
-3k3_£ hy(tg)h (o,-1,) hy(0,-T g0 3=7¢) hy(o,~tgmog-T¢)ar

'l

A

) |
=3k3 J hy(rg)hy(o)-tg)hy(a 314,01~ 5-1 ) dr

[ ]
-4k4_‘].h1( 16] hl( 01-16) hl(oz-t 6) hl(o3-t 6) h2(°4"6'° s—ts)d‘t 6
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The fifth order Volterra transfer function is then given by
Hs(sl,sz,s3,s4,ss)= Hl(sl+s2+s3+s4+ss){-2k2H2(sl,sz)n3(s3,s4,ss)
-2k Hl(sl)H4(s2,s3,s4.s )
-3k3[H1(s1)H2(s2,s3)Hz(s4,s5)
+H,(s,)H,(s,)H (s5,8,,5.)]
-4k4H1(s1)H1(32)51(33)32(34,55)

5
-k, I H,(s.)}
5 j=y3 174

The fifth order Volterra transfer function will only depend on
the constants ky, k3, k4, kg and the linear transfer function
because all the low order transfer functions only depend on con-
stants and H;(s).

c.8 VOLTAGE TO VOLTAGE "RUSTY BOLT" VOLTERRA TRANSFER FUNCTION

In the previous subsections, we derived the transfer func-
tions by considering the output to be a voltage and the input a
current., In this section, we derive voltage to voltage nonlinear
Volterra transfer functions. We consider as input the antenna
voltage and as output the voltage generated across the parallel
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combination of the capacitor and the nonlinear resistor shown in
Figure C-2, The linear voltage to voltage transfer function was
derived in Section 3 and is given by Equation (C.7).

In order to find the higher order voltage to voltage
responses, we can again use the circuits shown in Figures C-5
through C-8., The only change compared to the derivation of the
output voltage to the input current response occurs in the ex-
pression for v(t). The second order response is given by

£

vy(t) =k, _£ h,(t)v, 2(e-T)ar (C.31)
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where h;(t) is the linear impulse response when the input is a
current and the linear output voltage is given by

g
4

s A

vl(t) = _£ hvl(T)vl(t-T)dt.

The impulse response due to the input antenna voltage v,(t) is
denoted by hy;(t). We can now substitute Equation (C.32) in
(C.31) and obtain the result - '

v,(t) = -k, /] hl(t3)i . hvl(tl)va(t—t3-ri)dtidt3

and the 1limits of integration are understood to be from -= to
®, Now, if we let O = Ty¥74 and 0 ,=T 54T 5, then we can write the
above equation as
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vo(t) = [f hvz(ol,oz)va(t-cl)vl[t-oz)doldo2

hyalo1005) = =ky [f hyteih (o)1) h (0 m1) an .

The second order voltage to voltage Volterra transfer function is

obtained by taking the two-dimensional Laplace transform of Equa-
tion (C.35) which yields

Hyalsyrsy) = kol  (8)H ) (s,)H, (s, +s,)

(C.36)
= -kzﬂvl(sl)ﬁvl(sz)ﬂvl(sl+82)ze(sl+sz)

where we have made use of the fact that Hj(s)=H,)(s)2,(s) (Equa-

tion (C.7)). similarly, we can use Figure C-6 to determine the

third order response.

The third order response v3(t) from Figure
C-6 is given by

v3(t) =

-] hy ()] 2k,v, (=T )v, (=T )+kyv3(t-1)]ar .,
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Substituting Equations (C.32) and (C.34) into the above equation

and making a change of variables T =T+ v i=1,3 we have

3
V3(t) III hv3(°1'°2'°3) illlva( t-ai)doi

hv3(°1'°2'°3) = -2k2-£ hl(t)hvl(ol-t)h -T,OB-T)dT

va(®3

® 3
- kg _£ hy(r) 0

X hvl(ci-T)dT.

The third order voltage to voltage Volterra transfer function for
the lumped parameter "rusty bolt" circuit is obtained by taking
the three-dimensional Laplace transformation of the above equa-
tion which yields

Hy3(sr85r83) = [-2k 8 5(5,,83) ~k3H  (8,)H,(s5)]

Hy (5)) 8, (8 4s,48,5) 2 (5, +5,+s;)

From the second and third order transfer functions, we see that
the voltage to voltage nonlinear transfer functions take the same
form as the expressions for the output voltage to input current
transfer functions. The only difference is the impedance factor
that appears and which multiplies all terms. The impedance
factor is evaluated at the sum frequency. All the Volterra func-
tions derived in this Appendix can be put into their symmetrical
form,
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C.9 CONCLUSION

We have seen that all the nonlinear transfer functions for
a single nonlinearity and a simple rusty bolt equivalent circuit
depend only on constants and the linear transfer function, and,
in the case of the voltage to voltage transfer function also on
the equivalent antenna impedance. The linear transfer function
plays a crucial role in the identification of the nonlinear parts
of the system. It is also clear from the analysis that the
formal complexity of Volterra kernels rapidly increases with
their order.
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